首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
木质纤维素预处理方法的最新研究进展   总被引:4,自引:0,他引:4  
木质纤维素组分结构复杂,未处理的木质纤维素很难直接被微生物和酶降解。解决了木质素的降解问题,就能在很大程度上提高木质纤维素的降解性能,因此研究开发有效的预处理技术是一种合理利用木质纤维素的重要方法。经过预处理使木质纤维素首先降解成结构简单的组分,有利于进一步发酵生产乙醇或甲醇。预处理木质纤维素是提高原料利用率,缩短生产时间的有效手段。  相似文献   

2.
介绍了近年来循环冷却水系统中环保型阻垢剂的研究进展。重点阐述了价廉无污染的淀粉、单宁、木质素、纤维素、壳聚糖和腐植酸钠等天然高分子环保型阻垢剂,以及目前广泛应用的共聚物类的环保型阻垢剂和聚环氧琥珀酸、聚天冬氨酸、S-羧乙基硫代琥珀酸等新型环保型阻垢剂的阻垢性能和环境降解性能,并对这些阻垢剂的应用现状进行了阐述。而改性和复配是环保型阻垢剂的发展趋势。  相似文献   

3.
高效纤维素分解菌复合系的构建及其环境适应性研究   总被引:1,自引:0,他引:1  
以纤维素培养基和纤维素刚果红培养基为初筛和复筛培养基,从采集的样品中分离得到具有纤维素分解能力的菌株20株。选择其中具有较高纤维素酶活力的12个菌株与2株自生固氮菌和EM菌进行正交实验,得到3个组合表现出协同降解纤维素的作用,对滤纸降解效果为组合12〉组合8〉组合5。选用组合12进行了一系列的环境适应性研究,结果表明,碳源为微晶纤维素+CMC-Na时CMC酶活最高,最适氮源为蛋白胨+酵母膏,最适pH6.5,最适培养温度为30℃。培养第6天CMC酶活最高。  相似文献   

4.
经过实验分离到一株纤维素降解真菌CD-Q1,通过形态及分子生物学鉴定该真菌为匍匐根霉。该菌能够以滤纸、秸秆和脱酯棉为唯一碳源生长,8 d内可将26.5%的秸秆降解,可将7.5%的滤纸糖化。当以滤纸为唯一碳源时,pH=5条件下,滤纸失重及还原糖产生量最高,45 h内可将3%滤纸降解,生成0.845 mg/ml的还原糖(以葡萄糖计)。该纤维素降解真菌的分离为纤维素糖化及进一步利用提供了较好菌源,为纤维素降解性能的基因改良提供了理想的出发菌株。  相似文献   

5.
《中国环保产业》2014,(8):70-71
正由湖南泰谷生物科技股份有限公司开发的高效微生物秸秆腐熟剂技术,适用于传统种植业废弃物的处理。主要技术内容一、基本原理利用可溶性秸秆腐熟剂处理秸秆的生物处理技术,以秸秆生物发酵替代部分化肥,以拮抗菌代替部分农药,腐熟剂内含枯草芽孢杆菌、哈茨木霉、米曲霉、放线菌、生物酶、纤维分解菌、半纤维素分解菌、木质素分解菌、蛋白质分解菌、氨、硫化氢分解菌等多种活性菌,能快速分解农业秸秆中所含纤维素、半纤维素、木质素,将秸秆堆料中  相似文献   

6.
木质纤维素原料预处理技术研究近况   总被引:1,自引:0,他引:1  
孟卓  郑正  杨世关  李继红 《四川环境》2007,26(4):113-118
木质纤维素的结构导致其不易降解。通过酸处理、碱处理、液态高温水技术、爆破处理、湿式氧化、超临界CO2处理、生物降解等预处理手段,可使后续过程的效率大大提高。较为全面地对国内外木质纤维素原料预处理技术的研究近况做了总结,主要对国外学者的试验方法和现象分析进行了简要描述,并对萼合于我国的方法提出了自己的观点。  相似文献   

7.
高温好氧垃圾堆肥中人工接种初步研究   总被引:19,自引:0,他引:19  
本文筛选比较了625株细菌、153株霉菌、27株放线菌对果胶、淀粉、纤维素和半纤维素的降解能力。选用了降解能力和抗逆能力均强的芽孢杆菌「HB(35)05」、霉菌「M(21)01」和放线菌「HA(32)01」各1株作为种子,进行了人工接种堆肥试验,试验表明,接种1.5%能缩短发酵时间16h。  相似文献   

8.
城市生活垃圾中可生化单基质的厌氧消化   总被引:1,自引:0,他引:1  
在厌氧消化系统中,发酵细菌最主要的利用基质是淀粉、纤维素、脂肪和蛋白质等。本试验分别选取米饭、黄豆、芹菜和肥肉为上述四种基质的代表物质,通过对各物质进行的厌氧消化试验,探讨了它们的厌氧消化性能。结果表明。米饭在发酵初期降解速率最快,酸化也最明显。同时将消化初始阶段的pH控制在6.5时能使消化进入产甲烷阶段,没控制的只能停留在水解产酸阶段。将黄豆厌氧消化初期的pH控制在6.5并不能使消化顺利进行。将芹菜厌氧消化的初始pH值控制在6.5时可以加快它的降解速率。肥肉的厌氧消化也只有在对其消化进程控制pH值时才能顺利被降解。同时肥肉在厌氧消化进程中表现出了高产甲烷性能,产甲烷阶段累积产气量达13758mL,占总产气量的93.59%.  相似文献   

9.
Fenton试剂-超声波降解硝基苯产物的分析   总被引:5,自引:0,他引:5  
用Fenton试剂—超声波振荡法对硝基苯水溶液进行降解处理,采用气相色谱-质谱联用法分析降解的中间产物,用离子色谱法分析降解的最终产物。实验结果表明:硝基苯降解中间产物中含有间二硝基苯,邻、间、对硝基苯酚及苯酚;降解的最终产物主要为硝酸根,本文同时研究了中间产物在降解过程中浓度的变化规律。  相似文献   

10.
据有关专家们研究认为,若能在日常饮食生活中,有意地适当食用萝卜、胡萝卜、牛蒡等含有木质素多的蔬菜,一定对防治癌症有益. 木质素是木材、蔬菜等植物中的粗纤维物质,在蔬菜中,以萝卜、胡萝卜、牛蒡等根类蔬菜的含量最多. 如果将萝卜、胡萝卜切成薄片或细条,放置1天~2天后,其中的木质素会增加3倍左右.这是因为根类蔬菜初切细后,造成局部损伤,为防止被微生物再次损伤,便自行产生大量木质素,以起保护作用. 经试验研究发现,用这种木质素喂养移植了癌细胞的小白鼠,能起到明显的抑制癌细胞增殖的作用.对移殖癌细胞后的小白鼠,再喂以木质素饲料,结果竟使80%的癌细胞消失,同时也证实,这种木质素经口食用,对抗癌亦有效果. 詹永燕摘自1995年4月1日《成都晚报》  相似文献   

11.
Annually, great amounts of cellulose wastes, which could be measured in many billions of tons, are produced worldwide as residues from agricultural activities and industrial food processing. Consequently, the use of microorganisms in order to remove, reduce or ameliorate these potential polluting materials is a real environmental challenge, which could be solved by a focused research concerning efficient methods applied in biological degradation processes. In this respect, the scope of this chapter is to present the state of the art concerning the biodegradation of redundant cellulose wastes from agriculture and food processing by continuous enzymatic activities of immobilized bacterial and fungal cells as improved biotechnological tools and, also, to report on our recent research concerning cellulose wastes biocomposting to produce natural organic fertilizers and, respectively, cellulose bioconversion into useful products, such as: ‘single-cell protein’ (SCP) or ‘protein-rich feed’ (PRF). In addition, there are shown some new methods to immobilize microorganisms on polymeric hydrogels such as: poly-acrylamide (PAA), collagen-poly-acrylamide (CPAA), elastin-poly-acrylamide (EPAA), gelatin-poly-acrylamide (GPAA), and poly-hydroxy-ethyl-methacrylate (PHEMA), which were achieved by gamma polymerization techniques. Unlike many other biodegradation processes, these methods were performed to preserve the whole viability of fungal and bacterial cells during long term bioprocesses and their efficiency of metabolic activities. The immobilization methods of viable microorganisms were achieved by cellular adherence mechanisms inside hydrogels used as immobilization matrices which control cellular growth by: reticulation size, porosity degree, hydration rate in different colloidal solutions, organic and inorganic compounds, etc. The preparative procedures applied to immobilize bacterial and fungal viable cells in or on radiopolymerized hydrogels and, also, their use in cellulose wastes biodegradation are discussed in detail. In all such performed experiments were used pure cell cultures of the following cellulolytic microorganisms: Bacillus subtilis and Bacillus licheniformis from bacteria, and Pleurotus ostreatus, Pleurotus florida, and Trichoderma viride from fungi. These species of microorganisms were isolated from natural habitats, then purified by microbiological methods, and finally, tested for their cellulolytic potential. The cellulose biodegradation, induced especially by fungal cultures, used as immobilized cells in continuous systems, was investigated by enzymatic assays and the bioconversion into protein-rich biomass was determined by mycelial protein content, during such long time processes. The specific changes in cellular development of immobilized bacterial and fungal cells in PAA hydrogels emphasize the importance of physical structure and chemical properties of such polymeric matrices used for efficient preservation of their metabolic activity, especially to perform in situ environmental applications involving cellulose biodegradation by using immobilized microorganisms as long-term viable biocatalysts.  相似文献   

12.
The fungus Pleurotus ostreatus NRRL-2366 degraded 56.7% and 45.9% of untreated and chemically pretreated (delignified) sugarcane bagasse, respectively, during 14-day incubation in a submerged fermentation process. The biodegradation percentages of cellulose, hemicellulose and lignin were 33.0%, 72.5% and 14.5%, respectively. An increment of 22.6% of crude protein content in the residual fermented material was observed. Chemical composition of the end-product and its amino acids profile were reported.  相似文献   

13.
Sulfadimethoxine is a widely used sulfonamide veterinary antibiotic and could be a source of agricultural contamination. Therefore, information is needed about its degradation kinetics in manure under aerobic conditions. Based on the analysis of first-order kinetics and the assumption that sulfadimethoxine availability for degradation in manure could be limiting, a new kinetic model was developed and was found to fit the degradation kinetics well. The degradation rate in sterile manure was found to be much lower than in nonsterile manure, indicating that biodegradation was significant. In biologically active manure, the degradation rate constant decreased with increasing initial concentration of sulfadimethoxine, implying that the activity of the degrading microorganisms was inhibited. Increasing moisture or temperature was found to increase sulfadimethoxine degradation in manure. Mixing manure containing high levels of sulfadimethoxine with manure containing lower levels may result in more rapid degradation, thus greatly diminishing sulfadimethoxine contamination in manure and significantly reducing sulfadimethoxine inputs into the environment. During treatment, keeping the manure moist and storing in a moderately warm place under aerobic conditions may also help to diminish sulfadimethoxine contamination.  相似文献   

14.
Environmentally sustainable composite films were synthesized using polyvinyl alcohol (PVA) and cellulose. Cellulose was extracted from the Agro-waste (sugarcane bagasse) using chemical pre-treatment followed by the acid-hydrolysis process. The composites were also used for the treatment of dye (Methylene blue; MB and Crystal violet dye; CV) and it was observed that the removal capacity of PVA/C was 70% for CV and 64.5% for MB dye. The biodegradation study of these composite films was also carried out using bacterial strains isolated from the marine waters of south Bengal. The biodegradation study of these polymer composites was characterized by FTIR, SEM, XRD, TGA, swelling properties, and weight loss. The results indicated that the PVA/C polymer showed a better rate of degradation (43%) than PVA (35%). Different loading parameters like pH, temperature, and inoculum dosage were studied to assess the degradation of the composite materials. Thus, biodegradable composite films were synthesized utilizing Agro-waste and had dye removal properties.  相似文献   

15.
Pig (Sus scrofa) feces, separately collected and amended with wheat straw, was composted in a tunnel reactor connected with a cooler. The composting process was monitored for 4 wk and the degradation of organic matter was studied by two chemical extraction methods, 13C cross polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) and pyrolysis gas chromatography-mass spectrometry (GC-MS). Wet-chemical extraction methods were not adequate to study the degradation of specific organic compounds as the extraction reagents did not give selective separation of hemicellulose, cellulose, proteins, and lignins. A new method was proposed to calculate the contribution of four biomacromolecules (aliphatics, proteins, polysaccharides, and lignin) from the 13C CPMAS NMR spectrum. Pyrolysis GC-MS allowed identification of the composition of the biomacromolecules. The biomacromolecules showed different rates of degradation during composting. High initial degradation rates of aliphatics, hemicellulose, and proteins were observed, where aliphatics were completely degraded and hemicellulose and proteins were partly recalcitrant during the four weeks of composting. The degradation rate of cellulose was much lower and degradation was not completed within the four weeks of composting. Lignin was not degraded during the thermophilic stage of composting but started to degrade slowly during the mesophilic stage. A combination of 13C CPMAS NMR and pyrolysis GC-MS gave good qualitative and semiquantitative assessments of the degradation of biomacromolecules during composting.  相似文献   

16.
Landfill sites are potential sources of hazardous emissions by degradation and transformation processes of waste organic matter. Its chemical composition and microbial degradability are key factors for risk management, after-care, and estimation of potential emissions. The aim of the study is to provide information about composition and extent of transformation of waste organic matter in four landfill sites in Bavaria, Southern Germany by means of (13)C NMR spectroscopy, acid-hydrolyzable carbohydrates, chloroform-methanol extractable lipids, acid-hydrolyzable proteins, and lignin compounds after CuO oxidation. Ten samples of about 20 to 25 yr, 15 to 20 yr, and 5 to 10 yr of deposition each were taken at 2 m depth intervals by grab drilling till 10-m depth. Increasing temperatures from about 15 degrees C at 2-m depth to >40 degrees C at 10-m depth are found at some of the sites, representing optimum conditions for mesophile methane bacteria. Moisture contents of 160 to 310 g kg(-1) (oven dry), however, provide limiting conditions for anaerobic biodecay. Spectroscopic and chemical variables generally indicate a low extent of biodegradation and transformation at all sites despite a considerable heterogeneity of the samples. Independent of the time and depth of deposition more than 50% of the carbohydrate fraction of the waste organic matter provide a high potential for methane emissions and on-site energy production. There was no significant accumulation of long-chain organic and aromatic compounds, and of lignin degradation products even after more than 25 yr of rotting indicating higher extent of decomposition or stabilization of the waste organic matter. Installation of seepage water cleaning and recirculation systems are recommended to increase suboptimal moisture contents with respect to microbial methanogenesis, energy production, and long-term stabilization of municipal solid waste.  相似文献   

17.
18.
石油污染生物修复技术研究   总被引:2,自引:0,他引:2  
谢丹平 《四川环境》2006,25(4):109-112
本文概述了影响石油污染物生物降解修复处理的多种因素,对石油污染生物处理技术的发展进行了展望。其中主要影响因素包括:菌种的影响,菌种在不同的环境中和对不同碳链长度的碳氢化合物表现出不同的降解效率;石油物质本身物理化学特性的影响,如石油物质在水体或土壤中的浓度以及石油的粘度、沸点、折射率等特性;生存环境条件的影响,在接种入高效率的降解菌或利用土著微生物进行降解时,降解率受到生存环境中各种条件的影响,如表面活性剂、光照条件、吸附剂的利用、营养盐、共代谢底物、氧气、温度、盐度等。  相似文献   

19.
This study investigated the effect of inoculation of Pleurotus tuber-regium, a Nigerian white rot fungus, period of incubation, different levels of contamination on cutting fluids degradation in contaminated soil over 30, 60, and 90 days. Control for different levels of cutting fluids was also used to compare rates of bioremediation of the contaminant in the soil. At the end of each incubation period, the mycelia-ramified substrate was separated from the soil layer and dried. The soil samples were analyzed for physico-chemical parameters; total petroleum hydrocarbon, lignin content by determining the acid detergent fraction (ADF), heavy metals content of the soil using flame atomic absorption spectrophotometer, and changes in the polyphenol oxidase and peroxidase activities were also determined after 1, 2, and 3 months. P. tuber-regium improved the nutrient status of the soil and increased enzyme activity was recorded. A reduction in the pH and heavy metal contents of the soil at all levels of cutting fluids concentrations was detected. The lignin in the rice straw decreased from 34.50% in the control to 8.06% at 30% cutting fluids concentration after 3 months of incubation. The highest TPH loss of 30.84% was recorded at 20% cutting fluids contamination after 3 months compared to 13.75% at the onset of the experiment. The improvement of the nutrient contents of the soil, bioaccumulation of heavy metals, degradation of TPH, lignin, and increased activity of polyphenol oxidase and peroxidase was due to biodegradation of the cutting fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号