首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Occurrence and fate of 45 pesticides and 40 pesticide degradates were investigated in four contrasting agricultural settings--in Maryland, Nebraska, California, and Washington. Primary crops included corn at all sites, soybeans in Maryland, orchards in California and Washington, and vineyards in Washington. Pesticides and pesticide degradates detected in water samples from all four areas were predominantly from two classes of herbicides--triazines and chloroacetanilides; insecticides and fungicides were not present in the shallow ground water. In most samples, pesticide degradates greatly exceeded the concentrations of parent pesticide. In samples from Nebraska, the parent pesticide atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] was about the same concentration as the degradate, but in samples from Maryland and California atrazine concentrations were substantially smaller than its degradate. Simazine [6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine], the second most detected triazine, was detected in ground water from Maryland, California, and Washington. Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] rarely was detected without its degradates, and when they were detected in the same sample metolachlor always had smaller concentrations. The Root-Zone Water-Quality Model was used to examine the occurrence and fate of metolachlor at the Maryland site. Simulations accurately predicted which metolachlor degradate would be predominant in the unsaturated zone. In analyses of relations among redox indicators and pesticide variance, apparent age, concentrations of dissolved oxygen, and excess nitrogen gas (from denitrification) were important indicators of the presence and concentration of pesticides in these ground water systems.  相似文献   

2.
Johnson, Henry M., Joseph L. Domagalski, and Dina K. Saleh, 2010. Trends in Pesticide Concentrations in Streams of the Western United States, 1993‐2005. Journal of the American Water Resources Association (JAWRA) 00(0):1‐22. DOI: 10.1111/j.1752‐1688.2010.00507.x Abstract: Trends in pesticide concentrations for 15 streams in California, Oregon, Washington, and Idaho were determined for the organophosphate insecticides chlorpyrifos and diazinon and the herbicides atrazine, s‐ethyl diproplythiocarbamate (EPTC), metolachlor, simazine, and trifluralin. A parametric regression model was used to account for flow, seasonality, and antecedent hydrologic conditions and thereby estimate trends in pesticide concentrations in streams arising from changes in use amount and application method in their associated catchments. Decreasing trends most often were observed for diazinon, and reflect the shift to alternative pesticides by farmers, commercial applicators, and homeowners because of use restrictions and product cancelation. Consistent trends were observed for several herbicides, including upward trends in simazine at urban‐influenced sites from 2000 to 2005, and downward trends in atrazine and EPTC at agricultural sites from the mid‐1990s to 2005. The model provided additional information about pesticide occurrence and transport in the modeled streams. Two examples are presented and briefly discussed: (1) timing of peak concentrations for individual compounds varied greatly across this geographic gradient because of different application periods and the effects of local rain patterns, irrigation, and soil drainage and (2) reconstructions of continuous diazinon concentrations at sites in California are used to evaluate compliance with total maximum daily load targets.  相似文献   

3.
Pesticide transport through the unsaturated zone is a function of chemical and soil characteristics, application, and water recharge rate. The fate and transport of 82 pesticides and degradates were investigated at five different agricultural sites. Atrazine and metolachlor, as well as several of the degradates of atrazine, metolachlor, acetochlor, and alachlor, were frequently detected in soil water during the 2004 growing season, and degradates were generally more abundant than parent compounds. Metolachlor and atrazine were applied at a Nebraska site the same year as sampling, and focused recharge coupled with the short time since application resulted in their movement in the unsaturated zone 9 m below the surface. At other sites where the herbicides were applied 1 to 2 yr before sampling, only degradates were found in soil water. Transformations of herbicides were evident with depth and during the 4-mo sampling time and reflected the faster degradation of metolachlor oxanilic acid and persistence of metolachor ethanesulfonic acid. The fraction of metolachlor ethanesulfonic acid relative to metolachlor and metolachlor oxanilic acid increased from 0.3 to >0.9 at a site in Maryland where the unsaturated zone was 5 m deep and from 0.3 to 0.5 at the shallowest depth. The flux of pesticide degradates from the deepest sites to the shallow ground water was greatest (3.0-4.9 micromol m(-2) yr(-1)) where upland recharge or focused flow moved the most water through the unsaturated zone. Flux estimates based on estimated recharge rates and measured concentrations were in agreement with fluxes estimated using an unsaturated-zone computer model (LEACHM).  相似文献   

4.
Widespread contamination of California water bodies by the organophosphate insecticides diazinon and chlorpyrifos is well documented. While their usage has decreased over the last few years, a concomitant increase in pyrethroid usage (e.g., permethrin) (replacement insecticides) has occurred. Vegetated agricultural drainage ditches (VADD) have been proposed as a potential economical and environmentally efficient management practice to mitigate the effects of pesticides in irrigation and storm runoff. Three ditches were constructed in Yolo County, California for a field trial. A U-shaped vegetated ditch, a V-shaped vegetated ditch, and a V-shaped unvegetated ditch were each amended for 8 h with a mixture of diazinon, permethrin, and suspended sediment simulating an irrigation runoff event. Water, sediment, and plant samples were collected spatially and temporally and analyzed for diazinon and permethrin concentrations. Pesticide half-lives were similar between ditches and pesticides, ranging from 2.4 to 6.4 h. Differences in half-distances (distance required to reduce initial pesticide concentration by 50%) among pesticides and ditches were present, indicating importance of vegetation in mitigation. Cis-permethrin half-distances in V ditches ranged from 22 m (V-vegetated) to 50 m (V-unvegetated). Half-distances for trans-permethrin were similar, ranging from 21 m (V-vegetated) to 55 m (V-unvegetated). Diazinon half-distances demonstrated the greatest differences (55 m for V-vegetated and 158 m for V-unvegetated). Such economical and environmentally successful management practices will offer farmers, ranchers, and landowners a viable alternative to more conventional (and sometimes expensive) practices.  相似文献   

5.
ABSTRACT: The predominant mixtures of pesticides found in New York surface waters consist of five principal components. First, herbicides commonly used on corn (atrazine, metolachlor, alachlor, cyanazine) and a herbicide degradate (deethylatrazine) were positively correlated to a corn‐herbicide component, and watersheds with the highest corn‐herbicide component scores were those in which large amounts of row crops are grown. Second, two insecticides (diazinon and carbaryl) and one herbicide (prometon) widely used in urban and residential settings were positively correlated to an urban/residential component. Watersheds with the highest urban/residential component scores were those with large amounts of urban and residential land use. A third component was related to two herbicides (EPTC and cyanazine) used on dry beans and corn, the fourth to an herbicide (simazine) and an insecticide (carbaryl) commonly used in orchards and vineyards, and the fifth to an herbicide (DCPA). Results of this study indicate that this approach can be used to: (1) identify common mixtures of pesticides in surface waters, (2) relate these mixtures to land use and pesticide applications, and (3) indicate regions where these mixtures of pesticides are commonly found.  相似文献   

6.
The Acetochlor Registration Partnership (ARP) conducted a 7-yr ground water monitoring program at a total of 175 sites in seven states: Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and Wisconsin. While acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] was the primary focus, the analytical methods also quantified alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide], and two classes of soil degradates for acetochlor, alachlor, and metolachlor. Ground water samples were collected monthly for five years and quarterly for two additional years. All samples were analyzed for the presence of parent herbicides, and degradates were monitored during the last three years. Parent acetochlor was detected above 0.1 microg L(-1) in three or more samples at just seven sites. Alachlor and metolachlor were also rarely detected, but atrazine was detected in 36% of all samples analyzed. Even more widespread were the tertiary amide sulfonic acid (ethanesulfonic acid, ESA) degradates of acetochlor, alachlor, and metolachlor, which were detected at 81, 76, and 106 sites, respectively. The other class of monitored soil degradates (oxanilic acid, OXA) was detected less frequently, at 26, 16, and 63 sites for acetochlor OXA, alachlor OXA, and metolachlor OXA, respectively. The geographic distribution of detections did not follow the pattern originally expected when the study began. Rather than being a function primarily of soil texture, the detection of these herbicides in shallow ground water was related to site-specific factors associated with local topography, the occurrence of surface water drainage features, irrigation practices, and the vertical positioning of the well screen.  相似文献   

7.
ABSTRACT: Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photo-degradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.  相似文献   

8.
Saleh, Dina K., David L. Lorenz, and Joseph L. Domagalski, 2010. Comparison of Two Parametric Methods to Estimate Pesticide Mass Loads in California’s Central Valley. Journal of the American Water Resources Association (JAWRA) 00(0):1‐11. DOI: 10.1111/j.1752‐1688.2010.00506.x Abstract: Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first‐order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations.  相似文献   

9.
ABSTRACT: Studies were conducted to analyze the presence of 11 selected pesticides in 12 surface water supply intakes in the Piedmont and coastal plain regions of North Carolina. Samples were assayed using enzyme linked immunosorbent assays (ELISAs). Samples with pesticide detection of 1 μg/L or greater were extracted and confirmed using gas chromatography/mass spectrometry (GC/MS). Detection limits of the immunosorbent assays for pesticide residues were generally an order of magnitude higher than GC/MS. Atrazine was detected in approximately 45 percent of the samples, and on two occasions was at or above the lifetime Maximum Contaminant Level of 3.0 μg/L set by the Environmental Protection Agency for an annual average in finished drinking water. Metolachlor was detected in 58 percent of the samples. Of the remaining nine pesticides, including carbaryl, aldicarb, 2,4‐D, chiorpyrifos, acetochlor, methomyl, carbofuran, alachlor, and chlorothalonil, only aldicarb, 2,4‐D, and chlorpyrifos were detected in less than 9 percent of the samples for each pesticide.  相似文献   

10.
There is continuing concern over potential impacts of widespread application of nutrients and pesticides on ground- and surface-water quality. Transport and fate of nitrate and pesticides were investigated in a shallow aquifer and adjacent stream, Cow Castle Creek, in Orangeburg County, South Carolina. Pesticide and pesticide degradate concentrations were detected in ground water with greatest frequency and largest concentrations directly beneath and downgradient from the corn (Zea mays L.) field where they were applied. In almost all samples in which they were detected, concentrations of pesticide degradates greatly exceeded those of parent compounds, and were still present in ground waters that were recharged during the previous 18 yr. The absence of both parent and degradate compounds in samples collected from deeper in the aquifer suggests that this persistence is limited or that the ground water had recharged before use of the pesticide. Concentrations of NO(-)(3) in ground water decreased with increasing depth and age, but denitrification was not a dominant controlling factor. Hydrologic and chemical data indicated that ground water discharges to the creek and chemical exchange takes place within the upper 0.7 m of the streambed. Ground water had its greatest influence on surface-water chemistry during low-flow periods, causing a decrease in concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. Conversely, shallow subsurface drainage dominates stream chemistry during high-flow periods, increasing stream concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. These results point out the importance of understanding the hydrogeologic setting when investigating transport and fate of contaminants in ground water and surface water.  相似文献   

11.
Knowledge of pesticide distribution and persistence in nursery recycling pond water and sediment is critical for preventing phytotoxicity of pesticides during water reuse and to assess their impacts to the environment. In this study, sorption and degradation of four commonly used pesticides (diazinon, chlorpyrifos, chlorothalonil, and pendimethalin) in sediments from two nursery recycling ponds was investigated. Results showed that diazinon and chlorothalonil were moderately sorbed [K(OC) (soil organic carbon distribution coefficient) from 732 to 2.45 x 10(3) mL g(-1)] to the sediments, and their sorption was mainly attributable to organic matter content, whereas chlorpyrifos and pendimethalin were strongly sorbed (K(OC) > or = 7.43 x 10(3) mL g(-1)) to the sediments, and their sorption was related to both organic matter content and sediment texture. The persistence of diazinon and chlorpyrifos was moderate under aerobic conditions (half-lives = 8 to 32 d), and increased under anaerobic conditions (half-lives = 12 to 53 d). In contrast, chlorothalonil and pendimethalin were quickly degraded under aerobic conditions with half-lives < 2.8 d, and their degradation was further enhanced under anaerobic conditions (half-lives < 1.9 d). The strong sorption of chlorpyrifos and pendimethalin by the sediments suggests that the practice of recycling nursery runoff would effectively retain these compounds in the recycling pond, minimizing their offsite movement. The prolonged persistence of diazinon and chlorpyrifos, however, implies that incidental spills, such as overflows caused by storm events, may contribute significant loads of such pesticides into downstream surface water bodies.  相似文献   

12.
ABSTRACT: Studies were conducted to analyze the presence of 11 pesticide residues in 12 surface waters in the Piedmont and coastal plain regions of North Carolina. Samples were assayed using enzyme‐linked immunosorbent assays (ELISAs). All ELISA results of one part per billion (ppb, μg/L) or greater were confirmed using gas chromatography/mass spectrometry (GCIMS). ELISA detection limits were approximately an order of magnitude higher than GCJMS methods. Of the 5,035 analytical results from 742 surface water samples, atrazine was detected in approximately 45 percent of the samples, five of which were at or above the Maximum Contaminant Level (MCL) of 3‐ppb. Metolachlor was detected in 64 percent of the samples. Aldicarb, 2,4‐D, chlorpyrifos, and chlorothalonil were also detected, and each was found in less than 12 percent of the samples. The remaining pesticides, including carbaryl, acetochior, methomyl, carbofuran, and alachlor, were not detected during the study period.  相似文献   

13.
ABSTRACT: Several factors affect the occurrence and transport of pesticides in surface waters of the 29,400 km2 White River Basin in Indiana. A relationship was found between pesticide use and the average annual concentration of that pesticide in the White River, although this relationship varies for different classes of pesticides. About one percent of the mass applied of each of the commonly used agricultural herbicides was transported from the basin via the White River. Peak pesticide concentrations were typically highest in late spring or early summer and were associated with periods of runoff following application. Concentrations of diazinon were higher in an urban basin than in two agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas. Concentrations of atrazine, a corn herbicide widely used in the White River Basin, were higher in an agricultural basin with permeable, well‐drained soils, than in an agricultural basin with less permeable, more poorly drained soils. Although use of butylate and cyanazine was comparable in the White River Basin between 1992 and 1994, concentrations in the White River of butylate, which is incorporated into soil, were substantially less than for cyanazine, which is typically applied to the soil surface.  相似文献   

14.
Abstract:  Pesticide and transformation product concentrations and frequencies in ground water from areas of similar crop and pesticide applications may vary substantially with differing lithologies. Pesticide analysis data for atrazine, metolachlor, alachlor, acetochlor, and cyanazine and their pesticide transformation products were collected at 69 monitoring wells in Illinois and northern Indiana to document occurrence of pesticides and their transformation products in two agricultural areas of differing lithologies, till, and sand. The till is primarily tile drained and has preferential fractured flow, whereas the sand primarily has surface water drainage and primary porosity flow. Transformation products represent most of the agricultural pesticides in ground water regardless of aquifer material – till or sand. Transformation products were detected more frequently than parent pesticides in both the till and sand, with metolachlor ethane sulfonic acid being most frequently detected. Estimated ground‐water recharge dates for the sand were based on chlorofluorocarbon analyses. These age‐dating data indicate that ground water recharged prior to 1990 is more likely to have a detection of a pesticide or pesticide transformation product. Detections were twice as frequent in ground water recharged prior to 1990 (82%) than in ground water recharged on or after 1990 (33%). The highest concentrations of atrazine, alachlor, metolachlor, and their transformation products, also were detected in samples from ground water recharged prior to 1990. These age/pesticide detection relations are opposite of what would normally be expected, and may be the result of preferential flow and/or ground‐water mixing between aquifers and aquitards as evident by the detection of acetochlor transformation products in samples with estimated ground‐water ages predating initial pesticide application.  相似文献   

15.
ABSTRACT: During the fall of 2000, the occurrence was examined of 16 herbicides and 13 herbicide degradates in samples from 55 wells in shallow aquifers underlying grain producing regions of Illinois. Herbicide compounds with concentrations above 0.05 μg/L were detected in 56 percent of the samples. No concentrations exceeded regulatory drinking water standards. The six most frequently detected compounds were degradates. Water age was an important factor in determining vulnerability of ground water to transport of herbicide compounds. Unconsolidated aquifers, which were indicated to generally contain younger ground water than bedrock aquifers, had a higher occurrence of herbicides (73 percent of samples) than bedrock aquifers (22 percent). Temporal analysis to determine if changes in concentrations of selected herbicides and degradates could be observed over a near decadal period indicated a decrease in detection frequency (25 to 18 percent) between samplings in 1991 and 2000. Over this period, significant differences in concentrations were observed for atrazine (decrease) and total acetochlor (increase). The increase in acetochlor compound concentrations corresponds to an increase in acetochlor use during the study period, while the decrease in atrazine concentrations corresponds to relatively consistent use of atrazine. Changes in frequency of herbicide detection and concentration do not appear related to changes in land use near sampled wells.  相似文献   

16.
The Choptank River watershed, located on the Delmarva Peninsula of the Chesapeake Bay, is dominated by agricultural land use, which makes it vulnerable to runoff and atmospheric deposition of pesticides. Agricultural and wildlife areas are in close proximity and off-site losses of pesticides may contribute to toxic effects on sensitive species of plants and animals. High-volume air samples (n = 31) and event-based rain samples (n = 71) were collected from a single location in the watershed representing regional background conditions. Surface water samples were collected from eight stations in the tidal portion of the river on five occasions during 2000. Chlorothalonil, metolachlor, atrazine, simazine, endosulfan, and chlorpyrifos were frequently detected in the air and rain, with maximal concentrations during the period when local or regional crops were planted. The wet deposition load to the watershed was estimated at 150 +/- 16, 61 +/- 7, and 51 +/- 6 kg yr(-1) for chlorothalonil, metolachlor, and atrazine, respectively. The high wet deposition load compared with the estimated annual usage for chlorothalonil (13%) and endosulfan (14-90%) suggests an atmospheric source from outside the watershed. Net air-water gas exchange fluxes for metolachlor varied from -44 +/- 19 to 9.3 +/- 4.1 ng m(-2) d(-1) with negative values indicating net deposition. Wet deposition accounted for 3 to 20% of the total metolachlor mass in the Choptank River and was a more important source to the river than gas exchange. Estimates of herbicide flux presented here are probably a low estimate and actual rates may be significantly higher in areas closer to pesticide application.  相似文献   

17.
Profiles of ground water pesticide concentrations beneath the Nebraska Management Systems Evaluation Area (MSEA) describe the effect of 20 yr of pesticide usage on ground water in the central Platte Valley of Nebraska. During the 6-yr (1991-1996) study, 14 pesticides and their transformation products were detected in 7848 ground water samples from the unconfined water table aquifer. Triazine and acetamide herbicides applied on the site and their transformation products had the highest frequencies of detection. Atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] concentrations decreased with depth and ground water age determined with 3H/3He dating techniques. Assuming equivalent atrazine input during the past 20 yr, the measured average changes in concentration with depth (age) suggest an estimated half-life of >10 yr. Hydrolysis of atrazine and deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to hydroxyatrazine [6-hydroxy-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] appeared to be the major degradation route. Aqueous hydroxyatrazine concentrations are governed by sorption on the saturated sediments. Atrazine was detected in the confined Ogallala aquifer in ultra-trace concentrations (0.003 microg L(-1)); however, the possibility of introduction during reverse circulation drilling of these deep wells cannot be eliminated. In fall 1997 sampling, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] was detected in 57% of the 230 samples. Metolachlor oxanilic acid [(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl) amino]oxo-acetic acid] was detected in most samples. In ground water profiles, concentrations of metolachlor ethane sulfonic acid [2-[(ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxo-ethanesulfonic acid] exceeded those of deethylatrazine. Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] was detected in <1% of the samples; however, alachlor ethane sulfonic acid [2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid] was present in most samples (63%) and was an indicator of past alachlor use.  相似文献   

18.
A study of two small streams at Akumadan and Tono, Ghana, was undertaken during the rain and dry season periods between February 2005 and January 2006 to investigate the impact of vegetable field runoff on their quality. In each stream we compared the concentration of current-use pesticides in one site immediately upstream of a vegetable field with a second site immediately downstream. Only trace concentrations of endosulfan and chlorpyrifos were detected at both sites in both streams in the dry season. In the wet season, rain-induced runoff transported pesticides into downstream stretches of the streams. Average peak levels in the streams themselves were 0.07 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Akumadan stream); 0.04 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Tono stream). Respective average pesticide levels associated with streambed sediment were 1.34 and 0.32 microg kg(-1) (the Akumadan stream), and 0.92 and 0.84 microg kg(-1) (the Tono stream). Further investigations are needed to establish the potential endosulfan and chlorpyrifos effects on aquatic invertebrate and fish in these streams. Meanwhile measures should be undertaken to reduce the input of these chemicals via runoff.  相似文献   

19.
Millions of tons of agricultural fertilizer and pesticides are applied annually in the USA. Due to the potential for these chemicals to migrate to groundwater, a study was conducted in 2004 using field data to calculate water budgets, rates of groundwater recharge and times of water travel through the unsaturated zone and to identify factors that influence these phenomena. Precipitation was the only water input at sites in Indiana and Maryland; irrigation accounted for about 80% of total water input at sites in California and Washington. Recharge at the Indiana site (47.5 cm) and at the Maryland site (31.5 cm) were equivalent to 51 and 32%, respectively, of annual precipitation and occurred between growing seasons. Recharge at the California site (42.3 cm) and Washington site (11.9 cm) occurred in response to irrigation events and was about 29 and 13% of total water input, respectively. Average residence time of water in the unsaturated zone, calculated using a piston-flow approach, ranged from less than 1 yr at the Indiana site to more than 8 yr at the Washington site. Results of bromide tracer tests indicate that at three of the four sites, a fraction of the water applied at land surface may have traveled to the water table in less than 1 yr. The timing and intensity of precipitation and irrigation were the dominant factors controlling recharge, suggesting that the time of the year at which chemicals are applied may be important for chemical transport through the unsaturated zone.  相似文献   

20.
Abstract: Two karst springs in the Mississippian Carbonate Aquifer of northern Alabama were sampled between March 1999 and March 2001 to characterize the variability in concentration of nitrate, pesticides, selected pesticide degradates, water temperature, and inorganic constituents. Water temperature and inorganic ion data for McGeehee Spring indicate that this spring represents a shallow flow system with a relatively short average ground‐water residence time. Water issuing from the larger of the two springs, Meridianville Spring, maintained a constant temperature, and inorganic ion data indicate that this water represents a deeper flow system having a longer average ground‐water residence time than McGeehee Spring. Although water‐quality data indicate differing short‐term responses to rainfall at the two springs, the seasonal variation of nitrate and pesticide concentrations generally is similar for the two springs. With the exception of pesticides detected at low concentrations, the coefficient of variation for most constituent concentrations was less than that of flow at both springs, with greater variability in concentration at McGeehee Spring. Degradates of the herbicides atrazine and fluometuron were detected at concentrations comparable to or greater than the parent pesticides. Decreases in concentration of the principal degradate of fluometuron from about July to November indicate that the degradation rate may decrease as fluometuron (demethylfluometuron) moves deeper into the soil after application. Data collected during the study show that from about November to March when recharge rates increase, nitrate and residual pesticides in the soil, unsaturated zone, and storage within the aquifer are transported to the spring discharges. Because of the increase in recharge, fluometuron loads discharged from the springs during the winter were comparable to loads discharged at the springs during the growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号