首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are numerous demands for the limited water supplies in the Rocky Mountain (USA) region, and controversies surrounding instream flows abound. A specific problem involves water diversions (i.e., small dams that shunt water out of stream channels) during the summer irrigation season. We developed an approach to assess the effects of restoration of natural or less-than-natural summer flows on trout that accounts for variation in habitat over long segments of low-gradient, alluvial-valley streams. The approach has utility for managers because it can be conducted with hydologic data, aerial photographs, topographic maps, and a spreadsheet without extensive fieldwork. We applied the approach by assessing the effects of different summer flows on abundance of brown trout (Salmo trutta) in several streams annually dewatered in the Salt River Valley of western Wyoming. The assessment approach can be calibrated for other trout species and areas of the Rocky Mountain region.  相似文献   

2.
Concerns over increased water temperature of the Speed River as it flows through the City of Guelph in Southern Ontario and an observed relationship between summer stream temperatures and low dissolved oxygen levels in the river prompted an investigation into potential stream temperature management practices. Two mechanistic stream temperature models, SNTEMP and CE-QUAL-W2, were applied to the Speed River in order to gauge the effectiveness of various stream temperature management options. Calibrated versions of both models performed well (0.2 degrees C相似文献   

3.
Abstract: Airborne thermal remote sensing from four flights on a single day from a single‐engine airplane was used to collect thermal infrared data of a 10.47‐km reach of the upper East Branch Pecatonica River in southwest Wisconsin. The study uses a one‐dimensional stream temperature model calibrated with the longitudinal profiles of stream temperature created from the four thermal imaging flights and validated with three days of continuous stream temperature data from instream data loggers on the days surrounding the thermal remote‐sensing campaign. Model simulations were used to quantify the sensitivity of stream thermal habitat to increases in air and groundwater temperature and changes in base flow. The simulations indicate that stream temperatures may reach critical maximum thresholds for brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) mortality, particularly if both air temperature increases and base flow declines. The approach demonstrates that thermal infrared data can greatly assist stream temperature model validation due to its high spatial resolution, and that this spatially continuous stream temperature data can be used to pinpoint spatial heterogeneity in groundwater inflow to streams. With this spatially distributed data on thermal heterogeneity and base‐flow accretion, stream temperature models considering various climate change scenarios are able to identify thermal refugia that will be critical for fisheries management under a changing climate.  相似文献   

4.
ABSTRACT: Warm summer stream temperatures due to low flows and high air temperatures are a critical water quality problem in many western United States river basins because they impact threatened fish species’habitat. One way to alleviate this problem is for local and federal organizations to purchase water rights to be used to increase flows, hence decrease temperatures. Presented is a Decision Support System (DSS) that can be used in an operations mode to effectively use water acquired to mitigate warm stream temperatures. The DSS uses a statistical model for predicting daily stream temperatures and a rule‐based module to compute reservoir releases. Water releases are calculated to meet fish habitat temperature targets based on the predicted stream temperature and a user specified confidence of the temperature predictions. Strategies that enable effective use of a limited amount of water throughout the season have also been incorporated in the DSS. The utility of the DSS is demonstrated by an example application to the Truckee River near Reno, Nevada, using hypothetical operating policy and 1988 through 1994 inflows. Results indicate that the DSS could substantially reduce the number of target temperature violations (i.e., stream temperatures exceeding the target temperature levels detrimental to fish habitat).  相似文献   

5.
Abstract: We compared summer stream temperature patterns in 40 small forested watersheds in the Hoh and Clearwater basins in the western Olympic Peninsula, Washington, to examine correlations between previous riparian and basin‐wide timber harvest activity and stream temperatures. Seven watersheds were unharvested, while the remaining 33 had between 25% and 100% of the total basin harvested, mostly within the last 40 years. Mean daily maximum temperatures were significantly different between the harvested and unharvested basins, averaging 14.5°C and 12.1°C, respectively. Diurnal fluctuations between harvested and unharvested basins were also significantly different, averaging 1.7°C and 0.9°C, respectively. Total basin harvest was correlated with average daily maximum temperature (r2 = 0.39), as was total riparian harvest (r2 = 0.32). The amount of recently clear‐cut riparian forest (<20 year) within 600 m upstream of our monitoring sites ranged from 0% to 100% and was not correlated to increased stream temperatures. We used Akaike’s Information Criteria (AIC) analysis to assess whether other physical variables could explain some of the observed variation in stream temperature. We found that variables related to elevation, slope, aspect, and geology explain between 5% and 14% more of the variability relative to the variability explained by percent of basin harvested (BasHarv), and that the BasHarv was consistently a better predictor than the amount of riparian forest harvested. While the BasHarv is in all of the models that perform well, the AIC analysis shows that there are many models with two variables that perform about the same and therefore it would be difficult to choose one as the best model. We conclude that adding additional variables to the model does not change the basic findings that there is a relatively strong relationship between maximum daily stream temperatures and the total amount of harvest in a basin, and strong, but slightly weaker relationship between maximum daily stream temperatures and the total riparian harvest in a basin. Seventeen of the 40 streams exceeded the Washington State Department of Ecology’s (DOE) temperature criterion for waters defined as “core salmon and trout habitat” (class AA waters). The DOE temperature criterion for class AA waters is any seven‐day average of daily maximum temperatures in excess of 16°C. The probability of a stream exceeding the water quality standard increased with timber harvest activity. All unharvested sites and five of six sites that had 25‐50% harvest met DOEs water quality standard. In contrast, only nine of eighteen sites with 50‐75% harvest and two of nine sites with >75% harvest met DOEs water quality standard. Many streams with extensive canopy closure, as estimated by the age of riparian trees, still had higher temperatures and greater diurnal fluctuations than the unharvested basins. This suggests that the impact of past forest harvest activities on stream temperatures cannot be entirely mitigated through the reestablishment of riparian buffers.  相似文献   

6.
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities.  相似文献   

7.
Mayer, Timothy D. and Seth W. Naman, 2011. Streamflow Response to Climate as Influenced by Geology and Elevation. Journal of the American Water Resources Association (JAWRA) 47(4):724‐738. DOI: 10.1111/j.1752‐1688.2011.00537.x Abstract: This study examines the regional streamflow response in 25 predominately unregulated basins to warmer winter temperatures and snowpack reductions over the last half century in the Klamath Basin of California and Oregon. Geologic controls of streamflow in the region result in two general stream types: surface‐dominated and groundwater‐dominated basins. Surface‐dominated basins were further differentiated into rain basins and snowmelt basins on the basis of elevation and timing of winter runoff. Streamflow characteristics and response to climate vary with stream type, as discussed in the study. Warmer winter temperatures and snowpack reductions have caused significantly earlier runoff peaks in both snowmelt and groundwater basins in the region. In the groundwater basins, the streamflow response to changes in snowpack is smoothed and delayed and the effects are extended longer in the summer. Our results indicate that absolute decreases in July‐September base flows are significantly greater, by an order of magnitude, in groundwater basins compared to surface‐dominated basins. The declines are important because groundwater basins sustain Upper Klamath Lake inflows and mainstem river flows during the typically dry summers of the area. Upper Klamath Lake April‐September net inflows have decreased an estimated 16% or 84 thousand acre‐feet (103.6 Mm3) since 1961, with the summer months showing proportionately more decline. These changes will exacerbate water supply problems for agriculture and natural resources in the region.  相似文献   

8.
Carbonate‐sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface‐water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater‐fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air‐water temperature relationships for 40 GWFS in southeastern Minnesota. A 40‐stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface‐water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater‐fed systems, but will do so at a slower rate than surface‐water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.  相似文献   

9.
The operation of Trinity and Lewiston Dams on the Trinity River in northern California in the United States, combined with severe watershed erosion, has jeopardized the existence of prime salmonid fisheries. Extreme streamflow depletion and stream sedimentation below Lewiston have resulted in heavy accumulation of coarse sediment on riffle gravel and filling of streambed pools, causing the destruction of spawning, nursery, and overwintering habitat for prized chinook salmon (Salmo gairdnerii) and steelhead trout (Oncorhynchus tschawytscha). Proposals to restore and maintain the degraded habitat include controlled one-time remedial peak flows or annual maintenance peak flows designed to flush the spawning gravel and scour the banks, deltas, and pools. The criteria for effective channel restoration or maintenance by streambed flushing and scouring are examined here, as well as the mechanics involved.The liabilities of releasing mammoth scouring-flushing flows approximating the magnitude that preceded reservoir construction make this option unviable. The resulting damage to fish habitat established under the postproject streamflow regime, as well as damage to human settlements in the floodplain, would be unacceptable, as would the opportunity costs to hydroelectric and irrigation water users. The technical feasibility of annual maintenance flushing flows depends upon associated mechanical and structural measures, particularly instream maintenance dredging of deep pools and construction of a sediment control dam on a tributary where watershed erosion is extreme. The cost effectiveness of a sediment dam with a limited useful economic life, combined with perpetual maintenance dredging, is questionable.  相似文献   

10.
Huang, Biao, Christian Langpap, and Richard M. Adams, 2011. Using Instream Water Temperature Forecasts for Fisheries Management: An Application in the Pacific Northwest. Journal of the American Water Resources Association (JAWRA) 47(4):861‐876. DOI: 10.1111/j.1752‐1688.2011.00562.x Abstract: Water temperature is an important factor affecting aquatic life within the stream environment. Cold water species, such as salmonids, are particularly susceptible to elevated water temperatures. This paper examines the potential usefulness of short‐term (7 to 10 days) water temperature forecasts for salmonid management. Forecasts may be valuable if they allow the water resource manager to make better water allocation decisions. This study considers two applications: water releases from Lewiston Dam for management of adult Chinook salmon (Oncorhynchus tshawytscha) in the Klamath River and leasing water from agriculture for management of steelhead trout (Oncorhynchus mykiss) in the John Day River. We incorporate biophysical models and water temperature distribution data into a Bayesian framework to simulate changes in fish populations and the corresponding opportunity cost of water under different levels of temperature forecast reliability. Simulation results indicate that use of the forecasts results in increased fish production and that marginal costs decline as forecast reliability increases, suggesting that provision and use of such stream temperature forecasts would have potential value to society.  相似文献   

11.
This study examines the use of bioretention as a strategy to reduce the thermal impact associated with urban stormwater runoff in developing cold water stream watersheds. Temperature and flow data were collected during 10 controlled runs at a bioretention facility located in Blacksburg, Virginia. It was determined that bioretention has the ability to reduce the temperature of thermally charged stormwater runoff received from an asphalt surface. Significant reductions in peak and average temperatures (p < 0.001) were observed. However, this facility was unable to consistently reduce the temperature below the threshold for natural trout waters in Virginia. The ability of bioretention to reduce runoff volume and peak flow rate also serves to reduce the hydrothermal impact. An average thermal pollution reduction of nearly 37 MJ/m3 was calculated using an adopted threshold temperature of 20°C. Based on the results of this study, it was concluded that properly designed bioretention systems have the capability to reduce the thermal impact of urban stormwater runoff on cold water stream ecosystems.  相似文献   

12.
ABSTRACT: Records of hourly water temperatures for two streams in the Upper Mississippi River basin were used to find the error between instantaneous measurements of stream water temperatures and true daily averages. The instantaneous summer water temperature measurements were assumed to be collected during daylight hours, and measurement times were selected randomly. The absolute error at the 95 percent confidence level of randomly collected stream water temperatures was less than 0.9°C for a 1 to 5m deep large river, but as large as 3.6°C for a 0.3 to lm deep small stream. Temperature readings of morning samples were usually below daily average values, and afternoon readings were usually above. Daily mean water temperatures were obtained with less than 0.23°C standard deviation from true daily averages if the daily maximum and minimum water temperatures were averaged. Sample results were obtained for the open water (summer) season only, since diurnal water temperature fluctuations in ice covered streams are usually negligible.  相似文献   

13.
One central issue affecting the health of native fish species in the Pacific Northwest is water temperature. In situ observation methods monitor point temperatures, while thermal infrared (TIR) remote sensing captures spatial variations. Satellite‐based TIR sensors have the ability to view large regions in an instant. Four Pacific Northwest river reaches were selected to test the ability of both satellite‐based and moderate resolution aircraft‐based TIR remote sensing products to measure river temperatures. Images with resolutions of 5, 15, and 90 meters were compared with instream temperature observations to assess how along stream radiant temperatures are affected by resolution, reach width, and sensor platform. Where the stream reach can be resolved by the sensor, all sensors obtain water temperatures within ±2°C of instream observations. Along stream temperature variations of up to ±5°C were also observed. Trends were similar between two sets of TIR images taken several hours apart, indicating that the sensors are observing actual temperature patterns from the river surface. If sensor resolution is sufficient to obtain fully resolved water pixels in the river reach, accurate temperatures and spatial patterns can be observed. The current generation of satellite‐based TIR sensors is, however, only able to resolve about 6 percent of all Washington reaches listed as thermally impaired.  相似文献   

14.
Humans have severely impacted riparian ecosystems through water diversions, impoundments, and consumptive uses. Effective management of these important areas is becoming an increasingly high priority of land managers, particularly as municipal, industrial, and recreational demands for water increase. We examined radial tree growth of four riparian tree species (Pinus jeffreyi, Populus trichocarpa, Betula occidentalis, and Pinus monophylla) along Bishop Creek, California, and developed models relating basal area increment (BAI) and relative basal area increment (RBAI) to climatic and stream flow variables. Between years 1995–1999, univariate regression analysis with stream flow explained 29 to 61% of the variation in BAI and RBAI among all species except P. trichocarpa; growth by P. trichocarpa was not significantly related to stream flows over this period. Stepwise linear regression indicated that species responded differently to climatic variables, and models based on these variables explained between 33 to 86% of variation in BAI and RBAI during the decade of the 1990s. We examined branch growth of P. trichocarpa for sensitivity to differences in stream flow regimes and found that annual branch growth did not vary between a high- and low-flow site, but that annual branch growth was significantly higher in wet years with greater stream flows. Our results support the establishment of site-specific management goals by land managers that take into account all of the important tree species present in riparian ecosystems and their differential responses to altered hydrologic condition. Instream flow requirements for maintaining tree growth and vigor are only one of the species-specific responses that need to be evaluated, and these assessments should attempt to separate experimentally stream-flow (managed) controls from climatic (unmanaged) controls on growth.  相似文献   

15.
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies.  相似文献   

16.
ABSTRACT: High springtime river flows came earlier by one to two weeks in large parts of northern New England during the 20th Century. In this study it was hypothesized that late spring/early summer recessional flows and late summer/early fall low flows could also be occurring earlier. This could result in a longer period of low flow recession and a decrease in the magnitude of low flows. To test this hypothesis, variations over time in the magnitude and timing of low flows were analyzed. To help understand the relation between low flows and climatic variables in New England, low flows were correlated with air temperatures and precipitation. Analysis of data from 23 rural, unregulated rivers across New England indicated little evidence of consistent changes in the timing or magnitude of late summer/early fall low flows during the 20th Century. The interannual variability in the timing and magnitude of the low flows in northern New England was explained much more by the interannual variability in precipitation than by the interannual variability of air temperatures. The highest correlation between the magnitude of the low flows and air temperatures was with May through November temperatures (r =?0.37, p= 0.0017), while the highest correlation with precipitation was with July through August precipitation (r = 0.67, p > 0.0001).  相似文献   

17.
Flushing flows are re1eses from dams designed to remove fine sediment from downstream spawning habitat. We evaluated flushing flows on reaches proposed for hydroelectric diversions on seven streams in the eastern Sierra Nevada, California, with wild populations of brown trout (Salmo trutta). The stream reaches are steep (average map slopes range from 7 to 17 percent), are dominated by boulder cascades, and afford few opportunities for gravel deposition. Methods for estimating flushing flows from flow records, developed from studies in other localities, produced widely differing results when applied to the study streams, probably reflecting differences in the hydrologic and geomorphic characteristics of the streams on which the methods were developed. Tracer gravel experiments demonstrated that all sampled gravels were washed out by the flows of 1986, a wet year. Size analyses of gravel samples and hydraulic data from field surveys were used in tractive-force calculations in an attempt to specify the flow required to flush the gravels. However, these calculations produced some unrealistic results because the flows were nonuniform in the study reaches. This suggests that the tractive-force approach may not be generally applicable to small, steep streams where nonuniform flow conditions prevail.  相似文献   

18.
Carroll, Rosemary W.H., Greg Pohll, David McGraw, Chris Garner, Anna Knust, Doug Boyle, Tim Minor, Scott Bassett, and Karl Pohlmann, 2010. Mason Valley Groundwater Model: Linking Surface Water and Groundwater in the Walker River Basin, Nevada. Journal of the American Water Resources Association (JAWRA) 46(3):554-573. DOI: 10.1111/j.1752-1688.2010.00434.x Abstract: An integrated surface water and groundwater model of Mason Valley, Nevada is constructed to replicate the movement of water throughout the different components of the demand side of water resources in the Walker River system. The Mason Valley groundwater surface water model (MVGSM) couples the river/drain network with agricultural demand areas and the groundwater system using MODFLOW, MODFLOW’s streamflow routing package, as well as a surface water linking algorithm developed for the project. The MVGSM is capable of simulating complex feedback mechanisms between the groundwater and surface water system that is not dependent on linearity among the related variables. The spatial scale captures important hydrologic components while the monthly stress periods allow for seasonal evaluation. A simulation spanning an 11-year record shows the methodology is robust under diverse climatic conditions. The basin-wide modeling approach predicts a river system generally gaining during the summer irrigation period but losing during winter months and extended periods of drought. River losses to the groundwater system approach 25% of the river’s annual budget. Reducing diversions to hydrologic response units will increase river flows exiting the model domain, but also has the potential to increase losses from the river to groundwater storage.  相似文献   

19.
Climate change projections for the Pacific Northwest (PNW) region of North America include warmer temperatures (T), reduced precipitation (P) in summer months, and increased P during all other seasons. Using a physically based hydrologic model and an ensemble of statistically downscaled global climate model scenarios produced by the Columbia Basin Climate Change Scenarios Project, we examine the nature of changing hydrologic extremes (floods and low flows) under natural conditions for about 300 river locations in the PNW. The combination of warming, and shifts in seasonal P regimes, results in increased flooding and more intense low flows for most of the basins in the PNW. Flood responses depend on average midwinter T and basin type. Mixed rain and snow basins, with average winter temperatures near freezing, typically show the largest increases in flood risk because of the combined effects of warming (increasing contributing basin area) and more winter P. Decreases in low flows are driven by loss of snowpack, drier summers, and increasing evapotranspiration in the simulations. Energy‐limited basins on the west side of the Cascades show the strongest declines in low flows, whereas more arid, water‐limited basins on the east side of the Cascades show smaller reductions in low flows. A fine‐scale analysis of hydrologic extremes over the Olympic Peninsula echoes the results for the larger rivers discussed above, but provides additional detail about topographic gradients.  相似文献   

20.
The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the rivers water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the rivers seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the rivers thermal regime during certain conditions for over 200 km of the mainstem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号