首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Biodiesel of waste cooking oil origin is gaining attention as a replacement for current fossil fuels, as its low-priced, recycled feedstock shall prevent food source competition, which is estimated to happen with current biodiesel production processes. As a result, waste cooking oil has been claimed to be a highly potential feedstock for biodiesel production. In the present research work, Fe-Mn doped sulphated zirconia catalyst was synthesized and used in simultaneous esterification and transesterification of waste cooking oil to biodiesel synthesis. The catalyst was prepared through the impregnation method and characterized by using XRD, TPD-NH3, FT-IR, BET, and TEM. Response surface methodology (RSM) in conjunction with the central composite design (CCD) was applied to statistically evaluate and optimize the biodiesel preparation process. It was found that the synthesis of biodiesel achieved an optimum level of 97.2% waste cooking oil methyl ester’s (WCOME’s) yield at the following reaction conditions: methanol/oil molar ratio: 10:1, catalyst concentration: 3.0 wt %, and reaction temperature: 160 °C. The extremely high WCOME’s yield of 97.2% was proved to be due to high acidity, surface area, and large pore diameter; reactants can easily diffuse into the interior pore of the catalyst and allow them to be in contact with active sites that enhance catalytic activity.  相似文献   

2.
Singapore has pledged to attain 7–11% Business-As-Usual carbon emissions reduction by 2020. About 19% of CO2 contribution stemmed from road transport in 2005. Commercial vehicles, which uses mainly diesel, consumed 695 million litres diesel in 2012. An estimated 115,585 tonnes or 127 million litres cooking oils (derived from seeds/fruits) were consumed in 2010, in which the bulk of used cooking oil is re-incorporated into the food preparation process while only a small amount is being recycled into biodiesel or disposed into the sewerage. Nevertheless, the present research reveals that biodiesel derived from spent cooking oil has potential to be a viable fuel supplement. Surveys were carried out involving three market segments – suppliers, processors and end-users – to identify the barriers and obstacles in mass production of biodiesel. A key enabler of biodiesel as a fuel supplement towards a greener environment lies in government mandate/policies in promoting greater biodiesel usage.  相似文献   

3.
Caesalpinea eriostachys seed oil, as a source of triglycerides with potential application for biodiesel production in Mexico is introduced. Its lipid profile obtained by Gas Chromatography-Mass Spectrometry (GC-MS) revealed saturated and unsaturated glycerol esters as the constituents. Therefore, heterogeneous and homogeneous catalyzed transesterification reactions were assayed employing ZnAl hydrotalcites and KOH, as the catalysts, respectively. The transesterification reactions yielded 59% for Zn/Al(2), 79% for Zn/Al(4), and 90% for KOH, depicting typical behavior, as in biodiesel production data from literature, where Zn-Al hydrotalcites or KOH were assayed. The caloric, density, viscosity values, and fatty acid methyl esters profile from reaction products were concordant to EN 14214, suggesting C. eriostachys as a promising feedstock for biodiesel production.  相似文献   

4.
The depletion of fossil fuel reserves and increasing demands for diesel are considered to be important triggers for many of the initiatives that have been taken to search for possible sources for the production of biodiesel from materials available within the country. It is possible to produce biodiesel from waste/used cooking oils (WCO) that is comparable in quality to that of fresh vegetable oil. Not only does reuse of WCO, which can otherwise harm human health, reduce the burden on the government of treating oily wastewater, disposing of the waste, and maintaining public sewers, it also significantly lowers the production cost of biodiesel. In the process of frying, oil undergoes many reactions, leading to the formation of a number of undesirable compounds, such as polymers, free fatty acids, and many other chemicals. This poses challenges in the transesterification of WCO. This article covers different techniques in the production of biodiesel from WCO. It also compares combustion, emissions, and engine performance characteristics of biodiesel from WCO as well as factors affecting biodiesel production from WCO and its economic feasibility.  相似文献   

5.
Biodiesel has emerged as one of the most promising renewable energy to substitute existing petroleum-derived diesel fuel being used in transportation sectors. Among the various feedstocks reported for biodiesel production, Moringa oleifera oil is becoming a promising replacement for conventional diesel fuel. Therefore, this work provides a comprehensive overview of the recent progress in biodiesel production from Moringa oleifera oil. The physicochemical properties, fatty acid composition of oil and methyl esters, oil extraction methods, esterification, and transesterification process, and purification methods employed in the biodiesel production have been discussed.  相似文献   

6.
Unrefined rubber seed oil contains high levels of free fatty acids and moisture, which make the conventional chemical catalyzed transesterification unsuitable. The method of enzyme catalyzed transesterification is well suited for biodiesel production from rubber seed oil as the enzymes are insensitive to the free fatty acids. In the present work, rubber seed oil was extracted from preserved rubber seed cake by mechanical means. The extraction process was designed and optimized through 24 full factorial design. Extracted oil was subjected to enzymatic transesterification using four different lipases to identify the best one for the purpose. Transesterification process was optimized by considering three influencing variables for biodiesel production viz. methanol/oil molar ratio, catalyst concentration (% w/v) and solvent content (% v/v). A 23 full factorial design was applied to design the experiments and optimize the biodiesel production. The interactive effects of the independent variables on biodiesel yield were analyzed and regression models were developed for each set of enzyme reactions. Among the four lipases, Thermomysis Lanugonosus Lipase was found to be the most suitable for the transesterification of rubber seed oil with a biodiesel conversion of 92.83% at a molar ratio of 4% and 5% (w/v) enzyme concentration in solvent free reaction medium.  相似文献   

7.
The increasing demand of renewable energy sources has pressed the need to search for biofuels. The world is not only thrusting for potential sources of biofuels but also surveilling not to hamper the food supply, particularly in the Third World countries, such as Bangladesh. Rice bran oil is a prominent source of biofuels. Rice, the main cereal in Bangladesh, is cultivated all the year round. Rice hull containing bran is mostly wasted and merely used as feedstock for cattle and for cooking purposes. This study considered rice bran as a prospective source of biodiesel in Bangladesh. The properties of oil collected from rice bran were investigated to ensure the production of biodiesel by transesterification. An economic analysis relative to Bangladesh was conducted, and the production rate of biodiesel under different percentage of catalyst was investigated.  相似文献   

8.
In the present work, the crude biodiesel produced from spent fish frying oil through alkaline catalyzed transesterification was purified using a low-cost adsorbent viz. sulfonated tea waste. After separating the glycerol, the crude biodiesel was purified using the suggested adsorbent. Various methods of purification using the said adsorbent were applied such as purification using adsorption column chromatography and shaking methods. The results showed that purification using adsorption column chromatography exhibited the bst result. Properties of the purified fuels were determined and found conformed to those specified by the ASTM standards. For the sake of comparison, purification using zeolite and water washing method was also investigated. The result indicated that the suggested adsorbent was more successful on purification of the crude biodiesel compared to other methods.  相似文献   

9.
In this research study, biodiesel has been successfully produced from vegetable seed oil of an indigenous plant Salvadora persica L. that meets the international biodiesel standard (ASTM D6751). The biodiesel yield was 1.57 g/5 g (31.4% by weight) and the in-situ transesterification ester content conversion was 97.7%. The produced biodiesel density was 0.894 g/mL, its kinematic viscosity 5.51 mm2/s, HHV 35.26 MJ/kg, flash point 210°C, cetane no. 61, and sulfur content 0.0844%. Thermal analysis of the biodiesel showed that 97% weight loss was achieved at 595°C with total oxidation of the biodiesel. The production energy efficiency was 0.46% with a lab scale setup, assuming the volume fraction ratio (volume of the sample/total volume of the equipment used). The results revealed that single-step in-situ transesterification method is suitable for the production of biodiesel from S. persica seed oil.  相似文献   

10.
In this work we applied base catalyzed transesterification to convert non-edible welted thistle oil (Carduus acanthoides) as new non-edible feedstock into biodiesel (Fatty acid methyl esters). The highest biodiesel yield of 88% was obtained using optimized reaction conditions of 70°C and 5:1 molar ratio (methanol:oil). The synthesized esters were characterize and confirmed by the application of NMR and FT-IR techniques. Gas chromatography and mass spectroscopy identified different fatty acids as palmatic acid (C16:0), oleic acid (C18:1), linoleic acid (18:2), arachidic acid (C20:0), eicosanic acid (C20:1), and erucic acid (C22:1) in the oil of welted thistle. Six corresponding methyl esters reported in welted thistle oil biodiesel includes 9-hexadecenoic acid, hexadecanoic acid, 9-octadecadienoic acid, 11-eicosanoic acid, eicosanoic acid and 13-docosenoicacid. Fuel properties, such as density @40°C Kg/L (0.8470), kinematic viscosity @ 40°C c St (4.37), flash point (95°C), cloud point (+4°C), pour point (?5°C), and sulfur contents (0.0112% wt) of the biodiesel produced were compatible with American Society for Testing and Materials D 6751 specifications.  相似文献   

11.
The preparation of sodium methoxide-treated algae catalysts and their activity in the transesterification of Pongamia pinnata seed oil by dimethyl carbonate were investigated. We also investigated the effect of the sodium methoxide-treated algae catalyst on the biodiesel yield. The development of sodium methoxide-treated algae catalysts can overcome most problems associated with dissolution in dimethyl carbonate. The products were analyzed using gas chromatography-mass spectroscopy to identify the fatty acid methyl esters in the biodiesel produced. The molar ratio of Pongamia pinnata seed oil to dimethyl carbonate in transesterification in the presence of the sodium methoxide-treated algae catalyst was observed to play a substantial role in this study, wherein the Pongamia pinnata seed oil conversion increased with increasing catalyst concentration. The highest percent conversion rate was 97%. With intense research focus and development, an ideal catalyst can indeed be developed for optimal biodiesel production that is both economically feasible and environmentally benign.  相似文献   

12.
The remediation of biodiesel wastewater was carried out using chemical and electrochemical techniques. Initially the fatty acid methyl esters (FAME or biodiesel) and free fatty acids (FFA) were chemically removed from the wastewater using three types of mineral acids, H(2)SO(4), HNO(3) and HCl, at different pH values within the range of 1.0-8.0. Optimally, approximately 24.3 ml/l of FAME/FFA were removed from the wastewater when using H(2)SO(4) to set a final pH of 2.5 for 7 min. All pollutant levels were markedly reduced during this step. That is, approximately 38.94%, 76.32% and 99.36% of COD, BOD5 and oil & grease were respectively removed. The acidic aqueous phase left after the removal of the FAME/FFA phase was then treated by chemical- and electro-coagulation processes. The results demonstrated that both investigated treatment processes were effective for treating wastewater from a biodiesel production plant. The chemical coagulation provided a lower operating cost (1.11 USD/m(3)) compared with the electro-coagulation process (1.78 USD/m(3)). However, the latter process provided a better quality of wastewater compared with the former process, with the exception of the BOD levels.  相似文献   

13.
A series of heterogeneous KF/CaO catalysts modified with transition metals (lanthanum, cerium, and zirconium) were prepared via wet impregnation method and applied to the trsansesterification process of waste cooking oil (WCO) as feedstock with methanol to biodiesel production. The structure, performance of the solid catalysts was characterized by X-ray diffraction (XRD), temperature programmed desorption of CO2 (CO2-TPD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The effect of methanol/oil molar ratio, 1reaction time, reaction temperature, catalyst amount, and stability was investigated. The results showed that 10 wt% of lanthanum, cerium, and zirconium improved the catalytic activity of KF/CaO catalyst. The maximum catalytic activity using the lanthanum doping of 10wt% on KF/CaO catalyst was reached 98.7% under the optimal reaction condition of methanol/oil molar ratio of 12:1, reaction for 1 h at reaction temperature of 65°C, and 4% (wt/wt oil) catalyst amount. In addition, the FAME yield of KF/CaO/La catalyst remained higher than 95% after 10 cycles. The promotional effect of lanthanum doping could be attributed to the enhancement of the basicity strength of KF/CaO catalyst and block the leach of Ca2+ in the transesterification reaction.  相似文献   

14.
The production of biodiesel using oleaginous microorganisms is investigated as promising alternative to produce a truly sustainable and renewable transportation fuel. While the feasibility of this approach has been shown on the laboratory scale, a commercial scale implementation is to date inhibited due to economic restraints. In order to evaluate the current cost situation and to develop suggestions to reduce production related costs, a simple cost analysis of the proposed microbial oil production process has been carried out. For closed fermentation in large-scale fermenters a break-even price of 2,350 US$ t–1 for microbial oil was calculated. In the context of a sensitivity analysis it was shown that especially alterations in capital cost can lead to overall cost reductions. Accordingly, an open pond cultivation approach was designed, cutting the cost for equipment almost in half and decreasing the break-even price to 1,723 US$ t–1. However, these reductions are only feasible when stable biomass and lipid yields can be ensured in open-pond systems, because the sensitivity analysis identified these yield parameters as leading factors influencing the break-even price. Even under very optimistic assumptions, it was not possible to reduce the break-even price below that of conventional plant oils as competitive products. Therefore, economic feasibility of the process will probably only occur if on one hand considerable technical development and efficiency improvements of the production process are made while on the other hand plant and crude oil prices are continuously increasing.  相似文献   

15.
Carbon dioxide capture and storage (CCS) involves the capture of CO2 at a large industrial facility, such as a power plant, and its transport to a geological (or other) storage site where CO2 is sequestered. Previous work has identified pipeline transport of liquid CO2 as the most economical method of transport for large volumes of CO2. However, there is little published work on the economics of CO2 pipeline transport. The objective of this paper is to estimate total cost and the cost per tonne of transporting varying amounts of CO2 over a range of distances for different regions of the continental United States. An engineering-economic model of pipeline CO2 transport is developed for this purpose. The model incorporates a probabilistic analysis capability that can be used to quantify the sensitivity of transport cost to variability and uncertainty in the model input parameters. The results of a case study show a pipeline cost of US$ 1.16 per tonne of CO2 transported for a 100 km pipeline constructed in the Midwest handling 5 million tonnes of CO2 per year (the approximate output of an 800 MW coal-fired power plant with carbon capture). For the same set of assumptions, the cost of transport is US$ 0.39 per tonne lower in the Central US and US$ 0.20 per tonne higher in the Northeast US. Costs are sensitive to the design capacity of the pipeline and the pipeline length. For example, decreasing the design capacity of the Midwest US pipeline to 2 million tonnes per year increases the cost to US$ 2.23 per tonne of CO2 for a 100 km pipeline, and US$ 4.06 per tonne CO2 for a 200 km pipeline. An illustrative probabilistic analysis assigns uncertainty distributions to the pipeline capacity factor, pipeline inlet pressure, capital recovery factor, annual O&M cost, and escalation factors for capital cost components. The result indicates a 90% probability that the cost per tonne of CO2 is between US$ 1.03 and US$ 2.63 per tonne of CO2 transported in the Midwest US. In this case, the transport cost is shown to be most sensitive to the pipeline capacity factor and the capital recovery factor. The analytical model elaborated in this paper can be used to estimate pipeline costs for a broad range of potential CCS projects. It can also be used in conjunction with models producing more detailed estimates for specific projects, which requires substantially more information on site-specific factors affecting pipeline routing.  相似文献   

16.
Continuous flow transesterification of waste frying oil (WFO) with methanol for the biodiesel production was tested in a laboratory scale jacketed reactive distillation (RD) unit packed with clam shell based CaO as solid catalyst. The physiochemical properties of the clam shell catalysts were characterized by X-ray Diffraction (XRD), Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy (SEM), and Energy Dispersive Atomic X-ray Spectrometry (EDAX). The effects of the reactant flow rate, methanol-to-oil ratio, and catalyst bed height were studied to obtain the maximum methyl ester conversion. Reboiler temperature of 65°C was maintained throughout the process for product purification and the system reached the steady state at 7 hr. The experimental results revealed that the jacketed RD system packed with clam shell based CaO showed high catalytic activity for continuous production of biodiesel and a maximum methyl ester conversion of 94.41% was obtained at a reactant flow rate of 0.2 mL/min, methanol/oil ratio of 6:1, and catalyst bed height of 180 mm.  相似文献   

17.
Biodiesel produced by transesterification of waste animal oil is a promising green fuel in the future. ZnO-Al2O3 and ZnO/Zn2Al composition oxides were prepared by co-precipitation method and impregnation method, respectively. The above catalysts were characterized by X-ray diffraction (XRD), Brunauer--Emmett--Teller (BET) and CO2 adsorption and temperature-programmed desorption (CO2-TPD) and show that the high activity for the catalyst is attributed to its high alkalinity. The reaction parameters were optimized and the results show that the transesterification ratio of waste animal oil can reach 98.7% with 10% ZnO/Zn2Al catalyst after 2 h. Moreover, 10%ZnO/Zn2Al compound oxides can be active for the successive cycles. The glycerol as a predominant by-product after transesterification is of high purity with high use value.  相似文献   

18.
Waste cooking oil is a potential substitution of refined vegetable oil for the production of biodiesel due to the low cost of raw material and for solving their disposal problem. In this study, optimization of esterification process of free fatty acids in artificially acidified soybean oil with oleic acid has been carried out using methanol as an agent and ion exchange resin as a heterogeneous catalyst. The esterification reaction has been investigated based on the mass balance of the developed model. The model has been validated against experimental data and effects of temperature and catalyst weight have been analyzed. Thereafter, optimization process has been fulfilled for two different objective functions as conversion of acid oil and benefit. Optimization results indicated that the maximum conversion of acid is 95.95%, which is achievable at 4.48-g catalyst loading and reaction temperature of 120°C. Maximum benefit was obtained as US$0.057 per batch of reaction at a catalyst amount of 1 g and temperature of 120°C.  相似文献   

19.
Municipal solid waste management in China: Status,problems and challenges   总被引:1,自引:0,他引:1  
This paper presents an examination of MSW generation and composition in China, providing an overview of the current state of MSW management, an analysis of existing problems in MSW collection, separation, recycling and disposal, and some suggestions for improving MSW systems in the future. In China, along with urbanization, population growth and industrialization, the quantity of municipal solid waste (MSW) generation has been increasing rapidly. The total MSW amount increased from 31.3 million tonnes in 1980 to 212 million tonnes in 2006, and the waste generation rate increased from 0.50 kg/capita/day in 1980 to 0.98 kg/capita/year in 2006. Currently, waste composition in China is dominated by a high organic and moisture content, since the concentration of kitchen waste in urban solid waste makes up the highest proportion (at approximately 60%) of the waste stream. The total amount of MSW collected and transported was 148 million tonnes in 2006, of which 91.4% was landfilled, 6.4% was incinerated and 2.2% was composted. The overall MSW treatment rate in China was approximately 62% in 2007. In 2007, there were 460 facilities, including 366 landfill sites, 17 composing plants, and 66 incineration plants. This paper also considers the challenges faced and opportunities for MSW management in China, and a number of recommendations are made aimed at improving the MSW management system.  相似文献   

20.
Biodiesel is now-a-days recognized as a real potential alternative to petroleum-derived diesel fuel due to its number of desirable characteristics. However, its higher production cost resulting mainly due to use of costly food-grade vegetable oils as raw materials is the major barrier to its economic viability. Present work is an attempt to explore the potential of Eriobotrya japonica seed oil for the synthesis of biodiesel using alkali-catalyzed transesterification. Optimization of production parameters, namely molar ratio of alcohol to oil, amount of catalyst, reaction time and temperature, was carried out using Taguchi method. Fatty acid composition of both oil and biodiesel was determined using GC and H1 NMR. Alcohol to oil molar ratio of 6:1, catalyst amount of 1% wt/wt, 2 h reaction time and 50 °C reaction temperature were found to be the optimum conditions for obtaining 94.52% biodiesel. Highest % contribution was shown by the ‘amount of catalyst’ (67.32%) followed by molar ratio of alcohol to oil (25.51%). Major fuel properties of E. japonica methyl esters produced under optimum conditions were found within the specified limits of ASTM D6751 for biodiesel, hence it may be considered a prospective substitute of petro-diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号