首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
ABSTRACT: A scaled hydraulic model was used as a schematic representation of the Peach Bottom Atomic Power Station (PBAPS) discharge into Conowingo Pond during critically low river flows. The model approximated flow and temperature patterns and the degree of recirculation are assessed. Under normal operation the effluent is carried downstream and dissipated within about two miles. However, during dry weather years, river inflows can decrease substantially, resulting in unknown recirculation of effluent and flow patterns in Conowingo Pond. This study was conducted to investigate and predict flow patterns in Conowingo Pond under critically dry weather conditions. A threshold river flow is also identified that indicates a measure of the river's ability to maintain downstream advection of the effluent. The study suggests a number of unexpected current patterns, potential recirculation of the effluent, and changes in the dilution of the effluent.  相似文献   

2.
ABSTRACT: An application is described of the branch-network flow model, BRANCH, to the upper Alabama River system in central Alabama. The model is used to simulate one-dimensional unsteady flows and water surface elevations in approximately 60 river miles of the Alabama River system. Preliminary calibration was made using 72 hours of observed data. Simulated discharges are about 10 percent lower than observed discharges at higher discharge rates and computed flows lag observed flows by about 30 minutes.  相似文献   

3.
A deterministic, one-dimensional, unsteady numerical model has been developed, tested, and applied to simulate mean daily dissolved oxygen (DO) characteristics in 27 lake classes in the state of Minnesota. Reaeration and photosynthesis are the oxygen sources, while respiration, sedimentary, and biochemical water column oxygen demand are the sinks of oxygen in the model. The lake classes are differentiated by surface area (A s), maximum depth (H max), and trophic status expressed as Secchi depth (Z s). Because lake stratification is most important to lake oxygen dynamics, simulated DO characteristics are plotted in terms of a stratification parameterA s/H max 0.25 and Secchi depthZ s. Simulations provide DO profiles on a daily time scale. Specific DO characteristics of ecological and environmental interest are epilimnetic DO, hypolimnetic DO, DO gradient from surface to bottom, and DO minima and maxima. Specific results are as follows: Simulated mean daily and weekly DO values in the epilimnion of all lakes for both past and future climate scenarios are near saturation over the summer season. Hypolimnetic DO values depend strongly on lake morphometry, trophic status, and time throughout the summer season. Future climate conditions are specified as the historical records from 1955 to 1979, adjusted (monthly) by the 2 × CO2 GISS model output to account for doubling of atmospheric CO2. With this climate change, weekly averaged epilimnetic DO is projected to drop by less than 2 mg/liter, and will remain above 7 mg/liter throughout the open water season. The hypolimnetic DO reductions after climate change are on the order of 2–8 mg/liter. Periods of anoxia are longer by as much as 80 days. Those changes would alter water quality dynamics in lakes and have a profound effect on lake ecosystems including indigenous fishes. The results presented are useful for evaluating environmental management options.  相似文献   

4.
ABSTRACT: The calibration of a mixed-layer stratification model to the complex stratification region of Onondaga Lake is documented. The short- and long-term impacts of the closure of an adjoining alkali plant on the stratification regime of Onondaga Lake are evaluated with this model from the perspective of natural variations associated with meteorological variability. Chemical stratification prevailed in the lake during the operation of the facility as a result of its discharge of ionic waste. A predicted likely short-term impact of the closure, that was subsequently observed, was the failure of the lake to turn over in the spring immediately following the closure. Spring turnover did not occur regularly during the operation of the facility; but turnover can be expected to occur regularly in the future. Other projected changes in average stratification conditions include: 1) a 45% shorter period of stratification, 2) a 3m deeper upper mixed layer, and 3) a 30% lower maximum density gradient. Substantial variability in the stratification is predicted as a result of meteorological variability, indicating that comparison of characteristics for individual years during and after the operation of the facility could be misleading. The changes in the stratification regime are expected to affect water quality. In particular, certain features of the oxygen resources of the hypolimnioa are expected to improve (e.g., delayed onset of anoxia).  相似文献   

5.
ABSTRACT: The conspicuous shifts in summertime values of common measures of water qualify that have persisted for 10 years (1993 to 2002) in the Seneca River, New York, as a result of the zebra mussel invasion are documented. Resolution of patterns in time and space is supported by water quality monitoring that extends back to the late 1970s. Patterns are evaluated to describe the stability of impacts and quantify metabolic activity of the invader. The water quality impacts that have persisted unabated for 10 years since the invasion are the most severe documented for a river in North America. Changes in summer median conditions since the invasion include: (1) a 16‐fold decrease in chlorophyll concentration (Chi), (2) a 2.5‐fold increase in Secchi disc transparency, (3) a 17‐fold increase in soluble reactive phosphorus concentration, (4) a 3.7‐fold increase in total ammonia concentration, (5) a greater than 25 percent decrease in dissolved oxygen (DO) concentration, and (6) a decrease in pH of 0.55 units. The strength of these signatures has been driven by anthropogenic influences that include upstream nutrient loading and morphometric modifications of the river, and the functioning of Cross Lake, through which the river flows. This hypereutrophic lake sustains dense zebra mussel populations and related water quality impacts in the river downstream of the lake outflow by acting as a source of veligers and suitable food for this bivalve. Evidence is presented that levels of metabolic activity of the zebra mussel in this river have been resource limited, manifested through increased consumption of Chl and DO with increased delivery of these constituents in the lake's outflow.  相似文献   

6.
ABSTRACT: Operation of a storage‐based reservoir modifies the downstream flow usually to a value higher than that of natural flow in dry season. This could be important for irrigation, water supply, or power production as it is like an additional downstream benefit without any additional investment. This study addresses the operation of two proposed reservoirs and the downstream flow augmentation at an irrigation project located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies of the reservoirs were determined using a Stochastic Dynamic Programming (SDP) model considering the maximization of power production. The modified flows downstream of the reservoirs were simulated by a simulation model using the optimal operating policy (for power maximization) and a synthetic long‐term inflow series. Comparing the existing flow (flow in river without reservoir operation) and the modified flow (flow after reservoir operation) at the irrigation project, the additional amount of flow was calculated. The reliability analysis indicated that the supply of irrigation could be increased by 25 to 100 percent of the existing supply over the dry season (January to April) with a reliability of more than 80 percent.  相似文献   

7.
A river system is a network of intertwining channels and tributaries, where interacting flow and sediment transport processes are complex and floods may frequently occur. In water resources management of a complex system of rivers, it is important that instream discharges and sediments being carried by streamflow are correctly predicted. In this study, a model for predicting flow and sediment transport in a river system is developed by incorporating flow and sediment mass conservation equations into an artificial neural network (ANN), using actual river network to design the ANN architecture, and expanding hydrological applications of the ANN modeling technique to sediment yield predictions. The ANN river system model is applied to modeling daily discharges and annual sediment discharges in the Jingjiang reach of the Yangtze River and Dongting Lake, China. By the comparison of calculated and observed data, it is demonstrated that the ANN technique is a powerful tool for real-time prediction of flow and sediment transport in a complex network of rivers. A significant advantage of applying the ANN technique to model flow and sediment phenomena is the minimum data requirements for topographical and morphometric information without significant loss of model accuracy. The methodology and results presented show that it is possible to integrate fundamental physical principles into a data-driven modeling technique and to use a natural system for ANN construction. This approach may increase model performance and interpretability while at the same time making the model more understandable to the engineering community.  相似文献   

8.
This study seeks to improve understanding of temperature patterns in reservoir outflows. We examined water temperatures in an irrigation storage reservoir, Island Park Reservoir, and its outflow, Henry’s Fork of the Snake River in eastern Idaho. Our objectives were to (1) quantify the extent to which daily temperature ranges in the reservoir outflow deviated from other reaches of the Henry’s Fork, and (2) test whether the reservoir’s net volume change during the summer — expressed as the volume of water remaining in the reservoir on September 1 — predicted mean summer temperature in the outflow. Two years of temperature data showed dampened diel temperature cycles in the reservoir outflow. Model selection with 17 years of climatic, hydrologic, and reservoir management variables found mean summer temperature in the outflow was best predicted by September 1 reservoir volume and average summer air temperature. Two years of weekly reservoir thermal profiles indicated large changes in reservoir volume eliminated cool hypolimnetic water and encouraged mixing, allowing warm epilimnetic water to be discharged into the outflow. Increases in future drought frequency and severity and increases in summer air temperatures could increase the frequency of occurrence of high mean summertime water temperatures in the outflow. Our study provides important information for local managers by quantifying influences on outflow temperatures and the downstream river ecosystem.  相似文献   

9.
Recycling irrigation reservoirs (RIRs) are an emerging aquatic ecosystem and water resource of global significance. This study investigated the vertical distribution of water temperature, dissolved oxygen (DO), and pH in eight RIRs at two nurseries each in Virginia and Maryland from 2011 to 2014. Monomictic thermal stratification was observed from April to October in all RIRs, despite their shallow depths (0.75‐3.89 m). The strongest stratification had a top‐bottom temperature difference of 21.53°C. The top‐bottom temperature difference was positively correlated with water column depth, air temperature, and daily light integral (< 0.05). Wind speed did not impact the thermal stratification, likely due to their relatively small surface areas. Thermal stratification affected the vertical distribution of DO and pH. The top‐bottom differences in DO and pH were greater during stratification periods than nonstratification periods. Water pH in all RIRs was higher at the top than at the bottom with the greatest difference of 4.16 units. Discovery and characterization of thermal stratification in RIRs helps understand water quality dynamics in this novel ecosystem and promote safe and productive water reuse for irrigation. Specifically, water withdrawal depths should be adjusted according to variations in temperature, DO, and pH during the stratification and nonstratification periods to mitigate pathogen risk and improve water treatment efficacy and crop production.  相似文献   

10.
Mining waste rock dumps (WRDs) are potential sources of pollution, which after rainfall produce leachate discharges, loaded with acid mining drainage (AMD). The discharges generally occur in two phases: initial rapid leaching over a period of 1-7 days, followed by a period of variable duration during which leaching decelerates. The relative preponderance of each phase depends on the characteristics of the WRD, including its antecedent hydrological condition, and the temporal pattern and amount of rainfall.  相似文献   

11.
Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN).  相似文献   

12.
ABSTRACT: A method to evaluate the effect of hydropower development on downstream dissolved oxygen (DO) is presented for a low head dam. Water, previously aerated during release over spillways and under gates, is diverted through the hydropower facility without further aeration. The oxygen transfer that occurs as a result of air entrainment at the various release points of a dam is measured. Oxygen transfer efficiencies are calculated and incorporated into an oxygen transfer model to predict average release DO concentrations. This model is used to systematically determine the effect of hydropower operation on downstream DO. Operational alternatives are investigated and a simple operational guide is developed to mitigate the effects of hydropower operation. Combinations of reduced generation and optimal releases from the dam allow the hydropower facility to operate within DO standards.  相似文献   

13.
ABSTRACT: The Black River, a tributary of the Chehalis River in western Washington State, has a history of widespread low dissolved oxygen (DO), anoxia in some locations, and fish kills. As part of a Total Maximum Daily Load (TMDL) study, environmental data were collected during two summer dry seasons and simulations were conducted with the WASP5 model to assess the effect of biochemical oxygen demand ( BOD ), ammonia, and nutrient loads on DO in the Black River. DO levels were below the State water quality regulatory criterion of 8.0 mg/L in almost all locations during the study. The slow middle reach of the river showed stratified conditions, with anoxia in some of the deepest pools. Based on model simulations, DO was found to still fall below the 8.0 mg/L criterion in the entire mainstem under “natural” conditions, and eutrophication was identified as a potential problem in the middle reach. A TMDL was proposed for BOD and ammonia that would prevent significant degradation of DO in the Black River. To prevent eutrophic conditions in the Black River, a TMDL for total phosphorus was proposed that establishes a protective criterion of 0.05 mg/L for the middle river during the dry low-flow season.  相似文献   

14.
ABSTRACT: Varying treatment levels to meet seasonal variation in assimilative capacity of streams can reduce total costs of treatment. A mathematical model of a Pennsylvania stream based on a theoretically sound approximation of the physical relationships underlying the distribution of DO in a river system was used to determine discharge constraints for an economic optimization model which produced estimates of sewage treatment cost savings. Increasing the number of flow periods during the year enhances cost reducing opportunities even when land application processes are considered. Also, the least cost treatment process for year around operation may not be the least costly under multiple flow period management.  相似文献   

15.
ABSTRACT: The physical limnology of three modern wastewater stabilization ponds serving a small community in Minnesota was investigated over a 1-year period (July 1989 - October 1990). Water temperatures and associated meteorological parameters were recorded continuously; underwater light, dissolved oxygen, pH, and Secchi depth were measured intermittently (about weekly). Measurements of nutrients and planktonic species were made by other investigators. Water quality stratification dynamics were studied by analyzing variations of water temperature, dissolved oxygen, and pH distributions with time and over depth. Intermittent stratification and mixing of the shallow waste stabilization ponds (1–2 m deep) were documented and related to weather. The strong response of the ponds to seasonal and daily weather variations was observed. Three types of pond stratification conditions have been identified: (1) completely mixed during consecutive day and night, (2) stratified during the day and well-mixed during the night, and (3) continuously stratified during day and night. A diurnal cycle of stratification dynamics was first noticed in late April and persisted through summer and into fall. Differences in light attenuation and hence temperature stratification and DO distribution between pond 1 (primary), pond 2 (second primary) and pond 3 (secondary) in the wastewater treatment system were documented and related to different waste loading conditions. Temperature stratification affects chemical, microbial, and planktonic processes in the ponds. Results presented in this paper can be used to provide guidance for water quality sampling in monitoring of pond performance. Information on true mixing conditions is also needed to gain better understanding of important factors affecting pond operation, and for process simulations and reactor modeling of waste stabilization ponds.  相似文献   

16.
ABSTRACT: Floodwater-retarding impoundments, controlling 68 percent of the drainage area of Tonkawa Creek, a Washita River tributary in southwestern Oklahoma, have reduced the total flow volume about 36 percent over a 5-year period. Analyses showed the reduction occurred primarily in the less-than-2.5-cfs flow range, indicating the base flow regime has been altered. However, channelizing the downstream, mild-sloped, 3.6 miles of Tonkawa Creek that flows across a Washita River terrace increased the flow volume fourfold at the outlet. A double-masscurve analysis of water yield from a 1,127-square-mile Washita basin segment versus an untreated tributary showed the yield has not changed after 25 percent of the tributary area had been treated. Therefore, the flow reduction caused by structures is being offset by increased yields from channelization.  相似文献   

17.
ABSTRACT: Soil data comprise a basic input of SWAT (Soil and Water Assessment Tool) for a watershed application. For watersheds where site specific soil data are unavailable, the two U.S. Department of Agriculture (USDA) soil databases, the State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) databases, may be the best alternatives. Although it has been noted that SWAT models using the STATSGO and SSURGO data may give different simulation results for water, sediment, and agricultural chemical yields, information is scarce on the effects of using these two databases in predicting streamflows that are predominantly generated from melting snow in spring. The objective of this study was to assess the effects of using STATSGO versus SSURGO as an input for the SWAT model's simulation of the streamflows in the upper 45 percent of the Elm River watershed in eastern North Dakota. Designating the model as SWAT‐STATSGO when the STATSGO data were used and SWAT‐SSURGO when the SSURGO data were used, SWAT‐STATSGO and SWAT‐SSURGO were separately calibrated and validated using the observed daily streamflows. The results indicated that SWAT‐SSURGO provided an overall better prediction of the discharges than SWAT‐STATSGO, although both did a good and comparable job of predicting the high streamflows. However, SWAT‐STATSGO predicted the low streamflows more accurately and had a slightly better performance during the validation period. In addition, the discrepancies between the discharges predicted by these two SWAT models tended to be larger at upstream locations than at those farther downstream within the study area.  相似文献   

18.
ABSTRACT: Records of hourly water temperatures for two streams in the Upper Mississippi River basin were used to find the error between instantaneous measurements of stream water temperatures and true daily averages. The instantaneous summer water temperature measurements were assumed to be collected during daylight hours, and measurement times were selected randomly. The absolute error at the 95 percent confidence level of randomly collected stream water temperatures was less than 0.9°C for a 1 to 5m deep large river, but as large as 3.6°C for a 0.3 to lm deep small stream. Temperature readings of morning samples were usually below daily average values, and afternoon readings were usually above. Daily mean water temperatures were obtained with less than 0.23°C standard deviation from true daily averages if the daily maximum and minimum water temperatures were averaged. Sample results were obtained for the open water (summer) season only, since diurnal water temperature fluctuations in ice covered streams are usually negligible.  相似文献   

19.
The Hsintien Stream is one of the major branches of the Danshuei River system, which runs through the metropolitan capital city of Taipei, Taiwan and receives a large amount of wastewater. The dissolved oxygen concentration is generally low in the tidal portion of the Hsintien Stream. Hypoxia/anoxia occurs often, particularly during the low-flow period when the Feitsui Reservoir, Chingtan Dam and Chihtan Dam impound the freshwater for municipal water supply. Fish kills happen from time to time. This paper describes the application of a numerical hydrodynamic and water quality model to the Danshuei River system, with special attention to the tidal portion of the Hsintien Stream. The model is recalibrated with the prototype conditions of the year 2000. The hydrodynamic portion of the model is recalibrated with measured surface elevation and velocity at various stations in the river system. The water quality portion of the model is recalibrated with respect to the field data provided by Taiwan EPA. The input data of point and nonpoint sources are also estimated. The model simulates the concentrations of various forms of nutrients, CBOD and dissolved oxygen. A series of sensitivity runs was conducted to investigate the effects of point source loadings and river flow on the DO level in the river. It is demonstrated that the augmentation of river flow has as much effect on raising DO level as the reduction of point source loadings. The completion of the Taipei sewer project is expected to reduce the point source loadings by at least 75%. Under these reduced loadings, if the daily instream flow is maintained above the monthly Q75 flow throughout the year, the minimum DO concentration in the river would not fall below 1mg/L, which is the suffocation level for most fish species in the Hsintien Stream. (Q75 is the flow which is equaled or exceeded 75% of the days in the month.) The Feitsui Reservoir, Chingtan Dam and Chihtan Dam may impound water during the high flow periods and release freshwater to maintain the flow at the Q75 value in the Hsintien Stream during the drought periods.  相似文献   

20.
ABSTRACT: Outflow from the Sacramento-San Joaquin river system (Delta outflow) provides about 90 percent of the freshwater flow to San Francisco Bay. Because this river system also supplies most of the water used in California, some believed that annual freshwater flow to the Bay had declined by as much as 50 to 60 percent as water use increased. Consequently, we studied trends in actual Delta outflow and precipitation for the period 1921 to 1986, which is when Delta outflow data are available. We found that there has been no decrease in the annual Delta outflow over this period. In fact, a statistically significant increase in annual Delta outflow of 87 cfa/yr has occurred during the period 1921 to 1986. One reason that Delta outflow has increased is because precipitation has increased faster than water use. Other contributing factors include increased runoff from land use changes, water imports from other areas, and the redistribution of ground water. In addition, statistically significant seasonal trends in Delta outflow were found. Over the period 1921–1986 Delta outflow decreased in April and May and increased from July through November. Changes in other months were not statistically significant. These seasonal changes result primarily from the operation of upstream flood control and water development projects, which store water in the spring and release it in the summer and fall. These seasonal changes are also influenced by a climatic shift that has decreased spring snowmelt runoff and increased late summer through winter precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号