首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
A study of two small streams at Akumadan and Tono, Ghana, was undertaken during the rain and dry season periods between February 2005 and January 2006 to investigate the impact of vegetable field runoff on their quality. In each stream we compared the concentration of current-use pesticides in one site immediately upstream of a vegetable field with a second site immediately downstream. Only trace concentrations of endosulfan and chlorpyrifos were detected at both sites in both streams in the dry season. In the wet season, rain-induced runoff transported pesticides into downstream stretches of the streams. Average peak levels in the streams themselves were 0.07 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Akumadan stream); 0.04 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Tono stream). Respective average pesticide levels associated with streambed sediment were 1.34 and 0.32 microg kg(-1) (the Akumadan stream), and 0.92 and 0.84 microg kg(-1) (the Tono stream). Further investigations are needed to establish the potential endosulfan and chlorpyrifos effects on aquatic invertebrate and fish in these streams. Meanwhile measures should be undertaken to reduce the input of these chemicals via runoff.  相似文献   

2.
Sorption and desorption kinetics are essential components for modeling the movement and retention of applied agricultural chemicals in soils and the fraction of chemicals susceptible to runoff. In this study, we investigated the retention characteristics of sugarcane (Saccharum spp. hybrid) mulch residue for atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) based on studies of sorption-desorption kinetics. A sorption kinetic batch method was used to quantify retention of the mulch residue for a wide range of atrazine concentrations and reaction times. Desorption was performed following 504 h of sorption using successive dilutions, followed by methanol extraction. Atrazine retention by the mulch residue was well described using a linear model where the partitioning coefficient (K(d)) increased with reaction time from 10.40 to 23.4 cm3 g(-1) after 2 and 504 h, respectively. Values for mulch residue K(d) were an order of magnitude higher than those found for Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts) where the sugarcane crop was grown. A kinetic multireaction model was successful in describing sorption behavior with reaction time. The model was equally successful in describing observed hysteretic atrazine behavior during desorption for all input concentrations. The model was concentration independent where one set of model parameters, which was derived from all batch results, was valid for the entire atrazine concentration range. Average atrazine recovery following six successive desorption steps were 63.67 +/- 4.38% of the amount adsorbed. Moreover, a hysteresis coefficient based on the difference in the area between sorption and desorption isotherms was capable of quantifying hysteresis of desorption isotherms.  相似文献   

3.
Reducing surface and subsurface losses of herbicides in the soil and thus their potential contamination of water resources is a national concern. This study evaluated the effectiveness of sugarcane (Saccharum spp.) residue (mulch cover) in reducing nonpoint-source contamination of applied herbicides from sugarcane fields. Specifically, the effect of mulch residue on herbicide retention was quantified. Two main treatments were investigated: a no-till treatment and a no-mulch treatment. The amounts of extractable atrazine [2-chloro-4-(isopropylamino)-6-ethylamino-s-triazine], metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one], and pendimethalin [N-(ethylpropyl)-3,4-dimethyl-2,6-dinitroaniline] from the mulch residue and the surface soil layer were quantified during the 1999 and 2000 growing seasons. Significant amounts of applied herbicides were intercepted by the mulch residue. Extractable concentrations were at least one order of magnitude higher for the mulch residue compared with that retained by the soil. Moreover, the presence of mulch residue on the sugarcane rows was highly beneficial in minimizing runoff losses of the herbicides applied. When the residue was not removed, a reduction in runoff-effluent concentrations, as much as 50%, for atrazine and pendimethalin was realized. Moreover, the presence of mulch residue resulted in consistently lower estimates for rates of decay or disappearance of atrazine and pendimethalin in the surface soil.  相似文献   

4.
Cultural management practices that reduce the off-site transport of herbicides applied to row crops are needed to protect surface water quality. A soybean [Glycine max (L.) Merr.] field study was conducted near Stoneville, MS on Sharkey clay to evaluate row spacing (50 cm vs. 100 cm) effects on metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(methoxy-1-methylethyl) acetamide] transport. One day after the foliar application of metolachlor to 2.03 m wide by 2.43 m long plots, 60 mm h(-1) of simulated rainfall was applied until 25 min of runoff was generated per plot. The calculated mass of metolachlor intercepted by the soybean foliage was greater in narrow-row than wide-row soybean, 0.39 kg ha(-1) vs. 0.23 kg ha(-1), respectively. Field and laboratory studies indicated that less than 2% of the metolachlor intercepted by the soybean foliage was available for foliar wash-off 1 d after application. Antecedent soil water content at the start of the simulations was lower in narrow-row soybean. In turn, there was a 1.7-fold greater time to runoff on narrow-row plots. The greater time to runoff likely contributed to lower metolachlor concentration in runoff from narrow-row plots. Cumulative metolachlor losses were significantly greater in wide-row than narrow-row soybean, 3.7% vs. 2.2%, respectively. Findings indicate that narrow-row planting systems may reduce metolachlor runoff following a post-emergence application.  相似文献   

5.
The Choptank River watershed, located on the Delmarva Peninsula of the Chesapeake Bay, is dominated by agricultural land use, which makes it vulnerable to runoff and atmospheric deposition of pesticides. Agricultural and wildlife areas are in close proximity and off-site losses of pesticides may contribute to toxic effects on sensitive species of plants and animals. High-volume air samples (n = 31) and event-based rain samples (n = 71) were collected from a single location in the watershed representing regional background conditions. Surface water samples were collected from eight stations in the tidal portion of the river on five occasions during 2000. Chlorothalonil, metolachlor, atrazine, simazine, endosulfan, and chlorpyrifos were frequently detected in the air and rain, with maximal concentrations during the period when local or regional crops were planted. The wet deposition load to the watershed was estimated at 150 +/- 16, 61 +/- 7, and 51 +/- 6 kg yr(-1) for chlorothalonil, metolachlor, and atrazine, respectively. The high wet deposition load compared with the estimated annual usage for chlorothalonil (13%) and endosulfan (14-90%) suggests an atmospheric source from outside the watershed. Net air-water gas exchange fluxes for metolachlor varied from -44 +/- 19 to 9.3 +/- 4.1 ng m(-2) d(-1) with negative values indicating net deposition. Wet deposition accounted for 3 to 20% of the total metolachlor mass in the Choptank River and was a more important source to the river than gas exchange. Estimates of herbicide flux presented here are probably a low estimate and actual rates may be significantly higher in areas closer to pesticide application.  相似文献   

6.
The increased use of pesticides by container nurseries demands that practices for removal of these potential contaminants from runoff water be examined. Constructed wetlands may be designed to clean runoff water from agricultural production sites, including container nurseries. This study evaluated 14 constructed wetlands cells (1.2 by 4.9 m or 2.4 by 4.9 m, and 30 or 45 cm deep) that collected pesticide runoff from a 465-m2 gravel bed containerized nursery in Baxter, TN. One-half of the cells were vegetated with bulrush, Scirpus validus. The cells were loaded at three rates or flows of 0.240, 0.120, and 0.060 m3 d(-1). Herbicides-simazine (Princep) [2-chloro-4,6-bis(ethylamino)-s-triazine] and metolachlor (Pennant) [2-chloro-N-(2-ethyl-6-methylphenyl)-N-2-methoxy-1-methylethyl-acetamide] -were applied to the gravel portion of the container nursery at rates of 4.78 and 239 kg ha(-1), respectively, 9 July 1998, and at rates of 2.39 and 1.19 kg ha(-1), respectively, 17 May 1999. Pesticides entering the wetland and wetland cell water samples were analyzed daily to determine pesticide removal. At the slower flow rate, which corresponds to lower mass loading and greater hydraulic retention times (HRTs), a greater percentage of pesticides was removed. During the 2-yr period, cells with plants removed 82.4% metolachlor and 77.1% simazine compared with cells without plants, which removed 63.2% metolachlor and 64.3% simazine. At the lowest flow rate and mass loading, wetland cells removed 90.2% metolachlor and 83% simazine. Gravel subsurface flow constructed wetlands removed most of the pesticides in runoff water with the greatest removal occurring at lower flow rates in vegetated cells.  相似文献   

7.
Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.  相似文献   

8.
There is growing interest in evaluating the effects of corn silage harvesting methods on erosion control. Increasing the silage cutting height will increase residue cover and could conceivably minimize off-site migration of sediments compared with conventional silage harvesting. The effects of residue level and manure application timing on runoff and sediment losses from no-till corn were examined. Treatments included conventional corn grain (G) and silage (SL) and nonconventional, high-cut (60-65 cm) silage (SH). Corn harvesting treatments were subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm/h; 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots collected, and a subsample analyzed for sediment concentration and aggregate size distribution. Runoff volume was inversely related to residue cover. Manure addition to silage plots reduced spring runoff by 71 to 88%, attributable to an increase in soil organic matter content, compared with SH-N and SL-N. Differences in sediment concentration between SH and SL were not significant. For silage plots, spring-applied manure had the greatest influence on sediment export reducing it by 84 to 93% in spring runoff compared with corresponding N plots. Sediment loads were also 85 to 97% lower from SH-S compared with SL-N in all four seasons. Except for spring 2003, sediment export was lower from G compared with SL. The combination of manure and higher residue associated with high-cut silage often lowered sediment export compared with low-cut silage. Nearly identical aggregate size distributions were observed in sediments from SH and SL plots. High residue levels combined with spring-applied manure led to enrichment in the clay-sized fraction of runoff sediment. Recently applied manure and higher residue levels achieved by high-cutting silage can substantially lower sediment losses in spring runoff when soil is most susceptible to erosion.  相似文献   

9.
While numerous studies have evaluated the efficacy of outdoor rainfall simulations to predict P concentrations in surface runoff, few studies have linked indoor rainfall simulations to P concentrations in surface runoff from agricultural fields. The objective of this study was to evaluate the capacity of indoor rainfall simulation to predict total dissolved P concentrations [TP(<0.45)] in field runoff for four dominant agricultural soils in South Dakota. Surface runoff from 10 residue-free field plots (2 m wide by 2 m long, 2-3% slope) and packed soil boxes (1 m long by 20 cm wide by 7.5 cm high, 2-3% slope) was compared. Surface runoff was generated via rainfall simulation at an intensity of 65 mm h(-1) and was collected for 30 min. Packed boxes produced approximately 24% more runoff (range = 2.8-3.4 cm) than field plots (range = 2.3-2.7 cm) among all soils. No statistical differences in either TP(<0.45) concentration or TP(<0.45) loss was observed in runoff from packed boxes and field plots among soil series (0.17 < P < 0.83). Three of four soils showed significantly more total P lost from packed boxes than field plots. The TP(<0.45) concentration in surface runoff from field plots can be predicted from TP(<0.45) concentration in surface runoff from the packed boxes (0.68 < r(2) < 0.94). A single relationship was derived to predict field TP(<0.45) concentration in surface runoff using surface runoff TP(<0.45) concentration from packed boxes. Evidence is provided that indoor runoff can adequately predict TP(<0.45) concentration in field surface runoff for select soils.  相似文献   

10.
In line with European regulations, Dutch law imposes an environmental threshold of 0.1 microg L(-1) on pesticide concentrations in ground water. During registration, the risk of exceeding this threshold is assessed through simulations for one or a few standard scenarios that do not reflect spatial variability under field conditions. The introduction of precision agriculture, where soil variability is actively managed, can increase control over pesticide leaching. This study presents a step-wise evaluation of the effects of soil variability and weather conditions on pesticide leaching. The evaluation was conducted on a 100-ha arable farm and aimed at identifying opportunities for precision management. As a first step, a relative risk assessment identified pesticides presenting a relatively high risk to the environment. Second, the effect of weather conditions was analyzed through 20 years of simulations for three distinct soil profiles. Results were summarized in cumulative probability plots to provide a probabilistic characterization of historical weather data. The year matching 90% probability (1981) served as a reference to simulate pesticide leaching from 612 soil profiles. After interpolation, areas where concentrations exceeded the environmental threshold were identified. Out of a total of 19 pesticides, isoproturon [N-dimethyl-N'-(4-(1-methylethyl)phenyl)urea], metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one], and bentazon [2,1,3-benzothiadiazin-4(3H)-one, 3-isopropyl-, 2,2-dioxide] showed the highest risk for leaching. Leaching was strongly affected by soil variability at the within-field, field, and farm levels. Opportunities for precision management were apparent, but depended on the scale level at which environmental thresholds were implemented. When legislation is formulated in this issue, the presented step-wise evaluation can serve as a basis for identification and precision management of high-risk pesticides.  相似文献   

11.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

12.
Evaluation of compost blankets for erosion control from disturbed lands   总被引:1,自引:0,他引:1  
Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans.  相似文献   

13.
Phosphorus runoff: effect of tillage and soil phosphorus levels   总被引:2,自引:0,他引:2  
Continued inputs of fertilizer and manure in excess of crop requirements have led to a build-up of soil phosphorus (P) levels and increased P runoff from agricultural soils. The objectives of this study were to determine the effects of two tillage practices (no-till and chisel plow) and a range of soil P levels on the concentration and loads of dissolved reactive phosphorus (DRP), algal-available phosphorus (AAP), and total phosphorus (TP) losses in runoff, and to evaluate the P loss immediately following tillage in the fall, and after six months, in the spring. Rain simulations were conducted on a Typic Argiudoll under a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Elapsed time after tillage (fall vs. spring) was not related to any form of P in runoff. No-till runoff averaged 0.40 mg L(-1) and 0.05 kg ha(-1) DRP and chisel-plow plots averaged 0.24 mg L(-1) and 0.02 kg ha(-1) DRP concentration and loads, respectively. The relationship between DRP and Bray P1 extraction values was approximated by a logistic function (S-shaped curve) for no-till plots and by a linear function for tilled plots. No significant differences were observed between tillage systems for TP and AAP in runoff. Bray P1 soil extraction values and sediment concentration in runoff were significantly related to the concentrations and amounts of AAP and TP in runoff. These results suggest that soil Bray P1 extraction values and runoff sediment concentration are two easily measured variables for adequate prediction of P runoff from agricultural fields.  相似文献   

14.
In the Atlantic Coastal Plain region of southern Georgia (USA), cotton (Gossypium hirsutum L.) acreage increased threefold in the past decade. To more effectively protect water quality in the region, best management practices are needed that reduce pesticide runoff from fields in cotton production. This study compared runoff of two herbicides, fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)-phenyl]-urea] and pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine], from plots in strip-tillage (ST) and conventional-tillage (CT) management near Tifton, GA. Rainfall simulations were conducted one day after preemergence herbicide applications to 0.0006-ha plots and runoff from 0.15-ha plots due to natural rainfall following preemergence pendimethalin and fluometuron and postemergence fluometuron use was monitored. Pendimethalin runoff was greater under CT than ST due to strong pendimethalin soil sorption and higher erosion and runoff under CT. The highest losses, 1.3% of applied in CT and 0.22% of applied in ST, were observed during rainfall simulations conducted 1 DAT. Fluometuron runoff from natural rainfall was substantially lower from ST than from CT plots but the trend was reversed in rainfall simulations. In all studies, fluometuron runoff was also relatively low (<1% of applied), and on plots under natural rainfall, desmethylfluometuron (DMF) represented about 50% of total fluometuron runoff. Fluometuron's relatively low runoff rate appeared linked to its rapid leaching, and high DMF detection rates in runoff support DMF inclusion in fluometuron risk assessments. Results showed that ST has the potential to reduce runoff of both herbicides, but fluometuron leaching may be a ground water quality concern.  相似文献   

15.
This study was performed to identify the transport pathways of pesticides from a sloped litchi ( Sonn.) orchard to a nearby stream based on a three-component hydrograph separation (baseflow, interflow, surface runoff). Dissolved silica and electrical conductivity were chosen as representative tracers. During the study period (30 d), 0.4 and 0.01% of the applied mass of atrazine and chlorpyrifos, respectively, were detected in the stream after 151 mm of rainfall. Baseflow (80-96%) was the dominant hydrological flow component, followed by interflow (3-18%) and surface runoff (1-7%). Despite its small contribution to total discharge, surface runoff was the dominant atrazine transport pathway during the first days after application because pesticide concentrations in the surface runoff flow component declined quickly within several days. Preferential transport with interflow became the dominant pathway of atrazine. Because chlorpyrifos was detected in the stream water only twice, it was not included in the hydrograph separation. A feature of the surface runoff pathway was the coincidence of pesticide and discharge peaks. In contrast, peak concentrations of pesticides transported by interflow occurred during the hydrograph recession phases. Stormflow generation and pesticide transport depended on antecedent rainfall. The combination of high-resolution pesticide concentration measurements with a three-component hydrograph separation has been shown to be a suitable method to identify pesticide transport pathways under tropical conditions.  相似文献   

16.
Nitrous oxide is a greenhouse gas, and NO and NO2 play a key role in atmospheric chemistry. Nitrous oxide, NO, and NO2 fluxes from fertilized soils were measured six times per day by an automated flux monitoring system for one year, beginning on 21 May 1998. Pac choi (Brassica spp.) was cultivated for two months, and the plots were left fallow the remainder of the year. Two types of manure, poultry manure (PM) and swine manure (SM), and a chemical fertilizer, urea, were applied to the soil. The total amount of nitrogen applied in each case was 15 g N m(-2). The total fluxes from PM, SM, and urea for the year were 184, 61.3, and 44.8 mg N m(-2) for N2O, respectively; 9.95, 16.6, and 148 mg N m(-2) for NO, respectively; and -6.21, -7.23, and -7.84 mg N m(-2) for NO2, respectively. A negative correlation was found between the NO flux and the NO concentration of the chamber air just after the chamber was closed, when a flux from the atmosphere to soil was observed for 10 months. The mean gross NO production, the NO uptake rate constant, and the apparent compensation point for this period were 0.79 to 0.95 microg N m(-2) h(-1), 120 to 128 L m(-2) h(-1), and 5.65 to 7.35 ppbv, respectively.  相似文献   

17.
Arora, Kapil, Steven K. Mickelson, Matthew J. Helmers, and James L. Baker, 2010. Review of Pesticide Retention Processes Occurring in Buffer Strips Receiving Agricultural Runoff. Journal of the American Water Resources Association (JAWRA) 46(3):618-647. DOI: 10.1111/j.1752-1688.2010.00438.x Abstract: Review of the published results shows that the retention of the two pesticide carrier phases (runoff volume and sediment mass) influences pesticide mass transport through buffer strips. Data averaged across different studies showed that the buffer strips retained 45% of runoff volume (ranging between 0 and 100%) and 76% of sediment mass (ranging between 2 and 100%). Sorption (soil sorption coefficient, Koc) is one key pesticide property affecting its transport with the two carrier phases through buffer strips. Data from different studies for pesticide mass retention for weakly (Koc < 100), moderately (100 < Koc < 1,000), and strongly sorbed pesticides (Koc > 1,000) averaged (with ranges) 61 (0-100), 63 (0-100), and 76 (53-100) %, respectively. Because there are more data for runoff volume and sediment mass retention, the average retentions of both carrier phases were used to calculate that the buffer strips would retain 45% of weakly to moderately sorbed and 70% of strongly sorbed pesticides on an average basis. As pesticide mass retention presented is only an average across several studies with different experimental setups, the application of these results to actual field conditions should be carefully examined.  相似文献   

18.
Surface application of broiler litter to no-till cotton could lead to degradation of water quality. Incorporation of broiler litter into the top surface soil (0.05 m) could alleviate this risk. A 2-yr field study was conducted on a silt loam upland soil to determine the effect of incorporation of broiler litter into the soil surface on nutrient and bacterial transport in runoff. The experimental design was a randomized complete block with four treatments and three replications. Treatments were (i) unfertilized control; (ii) surface-appliedbroiler litter at 7.8 Mg ha(-1) without incorporation; (iii) surface-applied broiler litter at 7.8 Mg ha(-1) with immediate incorporation; and (iv) inorganic fertilizer N (urea ammonium nitrate, 32% N) and inorganic fertilizer P (triple superphosphate) at the recommended rate. Phosphorus was surface appliedat 25 kg ha(-1) and N was injected at 101 kg ha(-1) into the soil using a commercial liquid fertilizer applicator. Runoff was collected from small runoff plots (2.4 m by 1.6 m) established at the bottom side of main plots (13.7 m by 6.0 m). Incorporation of broiler litter reduced total N (TN), NO3-N, water soluble P (WSP), and total P (TP) concentrations in runoffby 35, 25, 61, and 64%, respectively, and litter-associated bacteria by two to three orders of magnitude compared with unincorporated treatment. No significant difference in total suspended solids (TSS) in runoffwas obtained between incorporated and unincorporated treatments. Incorporation of broiler litter into the surface soil in the no-till system immediately after application minimized the potential risk for surface nutrient losses and bacteria transport in runoff.  相似文献   

19.
Rainfall simulation experiments were conducted on annual grassland and coastal sage scrub hillslopes to determine the quantities of C and N removed by surface runoff in sediment and solution. Undisturbed coastal sage scrub soils have very high infiltration capacities (> 140 mm h(-1)), preventing the generation of surface runoff. Trampling disturbance to the sage scrub plots dramatically reduced infiltration capacities, increasing the potential for surface runoff and associated nutrient loss. Infiltration capacities in the grassland plots (30-50 mm h(-1)) were lower than in the sage scrub plots. Loss rates of dissolved C and N in surface runoff from grasslands were 0.5 and 0.025 mg m(-2) s(-1) respectively, with organic N accounting for more than 50% of the dissolved N. Total dissolved losses with simulated rainfall were higher than losses in simulations with just surface runoff, demonstrating the importance of raindrop impact in transferring solutes into the flow. Experimental data were incorporated into a numerical model of runoff and sediment transport to estimate hillslope-scale sediment-bound nutrient losses from grasslands. According to the model results, sediment-bound nutrient losses are sensitive to the density of vegetation cover and rainfall intensity. The model estimates annual losses in surface runoff of 0.2 and 0.02 g m(-2) for sediment-hound C and N, respectively. The results of this study suggest that conversion of coastal sage scrub to annual grasslands increases hillslope nutrient losses and may affect stream water quality in the region.  相似文献   

20.
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide-related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field-scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4-ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co-metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local-scale variation within 100 m(2) areas were two to three times lower than the field-scale variation within the entire field of about 4 ha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号