首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Ogallala Aquifer is depleting faster than it is being replenished. Interpretation of well data suggests that the water table in some counties is not declining, or not as much as might be expected in view of the amount of land being irrigated. As the Ogallala Aquifer in the Texas Panhandle receives almost no recharge, a possible explanation is that the current method of using well data for estimating the quantity of water remaining in the aquifer is underestimating water in storage. This study used an agronomic water mass balance approach to estimate how much water has been used for irrigation compared to amounts estimated by well data. The major finding was in counties where irrigation well capacities have declined significantly but irrigation is continuing, there is likely more water in storage than presently estimated, but the amounts of water being used for irrigation in those counties are greater than estimated changes of water in storage. The proposed hypothesis for this difference is there are mounds of water between wells that are not being accounted for and data are presented and discussed to support this conjecture.  相似文献   

2.
The High Plains aquifer (HPA) is the primary water source for agricultural irrigation in the US Great Plains. The water levels in many locations of the aquifer have declined steadily over the past several decades because the rate of water withdrawals exceeds recharge, which has been a serious concern to the water resources management in the region. We evaluated temporal trends and variations in agricultural water use and hydroclimatic variables including precipitation, air temperature, reference evapotranspiration, runoff, groundwater level, and terrestrial water storage across the HPA region for different periods from 1985 to 2020 at the grid, county, or region scale. The results showed that water withdrawals decreased from 21.3 km3/year in 1985 to 18.2 km3/year in 2015, while irrigated croplands increased from 71,928 km2 in 1985 to 78,464 km2 in 2015 in the entire HPA. The hydroclimatic time-series showed wetting trends in most of the northern HPA, but drying and warming trends in the southern region from 1985 to 2020. The groundwater level time-series indicated flat trends in the north, but significant declining in the central and southern HPA. Trends in irrigation water withdrawals and irrigation area across the HPA were controlled by the advancement of irrigation systems and technologies and the management of sustainable water use, but also were affected by dynamical changes in the hydroclimatic conditions.  相似文献   

3.
ABSTRACT: Ground water irrigation pumpage of the High Plains Aquifer is controlled at the state level in Texas and Oklahoma but at the regional level in Kansas and Nebraska. Critical declines in the aquifer that threatened the reliability of local public water supply wells prompted Nebraska's Upper Republican Natural Resources District (URNRD) to mandate water restrictions in 1978. Under current regulations, irrigators may not extract more than 1,842 millimeters of water per certified hectare (ha) in any five‐year period. Meter monitoring ensures that irrigators comply with restrictions. Farmers now incorporate irrigation scheduling into their cropping practices in order to meet URNRD controls. This study examines whether irrigators are using ground water efficiently while complying with pumpage limits. Crop irrigation requirements (CIR) from 1986 to 1999 were derived from a water balance approach incorporating Penman‐Monteith evapotranspira‐tion (ET) calculations from weather data supplied by the High Plains Climate Center automated weather station network. A ratio of average water pumped per well to the CIR was developed to verify irrigation efficiency. Results indicate that irrigation applications were less than CIR during most irrigation seasons. Irrigation efficiency increases can be attributed to crop rotations, favorable growing season precipitation, use of ET estimates to schedule irrigation, and water allocations limited to less than all certified hectares.  相似文献   

4.
5.
ABSTRACT: The Edwards Aquifer is one of the most studied and most prolific aquifers in the United States. The aquifer is a heavily fractured and faulted carbonate aquifer with transmissivities in excess of 100 ft2/s. The City of San Antonio relies upon the Edwards Aquifer as its sole source for water. Much work has been done on quantifying recharge to the aquifer and discharge from wells and acquiring aquifer characteristics from pumping tests, specific capacity tests, and geophysical logs. Although the aquifer has been well studied in Bexar County, much less is known about the Edwards Aquifer in Kinney County. This is partly due to the lower population within the county (approximately 3,500 people) relative to the eastern counties (Uvalde, Medina, Bexar, Comal, and Hays) and the great distance of Kinney County from high profile discharge areas such as the City of San Antonio and Comal and San Marcos Springs. Three key products resulted from this study: (1) exploratory well drilling and the largest aquifer test in the county that were conducted to evaluate the well yields within a 10,000 acre study area in which a drawdown of 2.5 ft approximately 1.2 miles away was observed while pumping at approximately 4,600 gpm; (2) a recharge estimate for the Edwards Aquifer within Kinney County of approximately 71,382 ac‐ft/yr; and (3) locating the Brackettville Groundwater Divide from an evaluation of ground water flow direction and hydrograph analysis. These results help evaluate the complex hydraulics occurring within Kinney County and aid in development of ground water modeling that will be used in managing the Edwards Aquifer.  相似文献   

6.
Johnson, R.L., B.R. Clark, M.K. Landon, L.J. Kauffman, and S.M. Eberts, 2011. Modeling the Potential Impact of Seasonal and Inactive Multi‐Aquifer Wells on Contaminant Movement to Public Water‐Supply Wells. Journal of the American Water Resources Association (JAWRA) 47(3):588‐596. DOI: 10.1111/j.1752‐1688.2011.00526.x Abstract: Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi‐aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi‐aquifer well is more than a kilometer from the PWS well. The contribution from multi‐aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi‐aquifer well from an unconfined aquifer to a confined aquifer even when those multi‐aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi‐aquifer wells can increase the vulnerability of a confined‐aquifer PWS well.  相似文献   

7.
ABSTRACT The effects of major water management practices on the pumping requirement from the Ogallala aquifer are discussed. Demand on the aquifer may be reduced as much as 15 percent by recycling irrigation runoff, 25 percent by recycling irrigation runoff and irrigating with water from playas, and 29 percent by recycling irrigation water in combination with irrigation from playas and artificial recharge of playa water to the aquifer. Other practices that can result in more efficient use of precipitation and groundwater are limited irrigation, land forming, soil profile modification, and improved irrigation systems, thereby reducing the pumping demand on the Ogallala. Additional water supplies can possibly be obtained by water harvesting, weather modification, and water importation. Conclusions reached were that the overdraft on the aquifer can be reduced by the application of sound water management practices on an area-wide basis.  相似文献   

8.
ABSTRACT: The Biscayne Aquifer is the sole source of drinking water for approximately three million residents of southeast Florida. Nine hazardous waste sites on the EPA National Priority List overlie this aquifer. Extensive investigation of an 80 square-mile area in metropolitan Miami detected low to moderate levels of toxic contaminants in the ground water, with volatile organic chemicals the most prevalent. The Centers for Disease Control concluded that contamination of the aquifer within the study area poses a serious potential threat to public health. Recommendations for source control and cleanup have been partially carried out. The top few feet of soil at the Miami Drum site have been excavated and relocated; ground water encountered during excavation has been withdrawn and treated, and the Northwest 58th Street Landfill has been closed. Recovery and treatment of ground water from the contaminated area was the recommended cleanup measure and has been approved by EPA and state and local agencies. A preventive action program for the Biscayne Aquifer region was also recommended for implementation by local agencies. This program consists of regulations, waste management practices, construction and treatment guidelines, and public information activities and materials. Implementing this program will help keep the Biscayne Aquifer water drinkable far into the future.  相似文献   

9.
ABSTRACT: In early 1997, the Texas Edwards Aquifer Authority implemented a pilot Irrigation Suspension Program with the objectives of increasing springflow and providing relief to municipalities during drought. Irrigators were paid an average of $234 per acre to suspend water use, a price higher than regional land rental rates. Auction theory and program implementation details suggest that the program implementation partially caused inflated bids. The Irrigation Suspension Program is also compared to two alternative programs: (1) subsidizing more efficient irrigation technology and (2) buying land. The irrigation suspension is found to be more cost‐effective relative to subsidizing improved irrigation efficiency because it can be put in place only when aquifer levels are low. Land purchase is a cheaper alternative if the bid levels remain at the levels observed.  相似文献   

10.
The Pacific Northwest is expected to witness changes in temperature and precipitation due to climate change. In this study, we enhance the Snake River Planning Model (SRPM) by modeling the feedback loop between incidental recharge and surface water supply resulting from surface water and groundwater extraction for irrigation and provide a case study involving climate change impacts and management scenarios. The new System Dynamics‐Snake River Planning Model (SD‐SRPM) is calibrated to flow at Box Canyon Springs located along a major outlet of the East Snake Plain Aquifer. A calibration of the model to flow at Box Canyon Springs, based on historic diversions (1950‐1995) resulted in an r2 value of 0.74 and a validation (1996‐2005) r2 value of 0.60. After adding irrigation entities to the model an r2 value of 0.91, 0.88, and 0.87 were maintained for modeled vs. observed (1991‐2005) end‐of‐month reservoir content in Jackson Lake, Palisades, and American Falls, the three largest irrigation reservoirs in the system. The scenarios that compared the impacts of climate change were based on ensemble mean precipitation change scenarios and estimated changes to crop evapotranspiration (ET). Increased ET, despite increased precipitation, generally increased surface water shortages and discharge of springs. This study highlights the need to develop and implement models that integrate the human‐natural system to understand the impacts of climate change.  相似文献   

11.
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

12.
ABSTRACT: Several chlorinated solvent plumes threaten the sole‐source aquifer underlying the Massachusetts Military Reservation at the western end of Cape Cod. Sensitive surface water features including ponds, cranberry bogs, and coastal wetlands are hydraulically connected to the aquifer. For one of the plumes (CS‐10 the original remedy of 120 extraction and reinjection wells has the potential for significant disruption of surface water hydrology, through the localized drawdown and mounding of the water table. Recirculating wells with in‐well air stripping offer a cost‐effective alternative to conventional pump‐and‐treat technology that does not adversely affect the configuration of the water table. Pilot testing of a two well system, pumping 300 gpm, showed a capture radius of > 200 feet per well, in‐well trichloroethylene (TCE) removal efficiencies of 92 to 98 percent per recirculation cycle, an average of three recirculation cycles within the capture zone, and no measurable effect on water table elevations at any point within the recirculation/treatment zone. During 120 days of operation, the mean concentration of TCE in the treatment zone was reduced by 83 percent, from 1,111 μg/l to 184 μg/l. Full‐scale design projections indicate that 60 wells at an average spacing of 160 feet, having an aggregate recirculation 11 MGD, can contain the CS‐b plume without ground water extraction or adverse hydraulic effects on surface water resources. The estimated capital costs for such a system are about $7 million, and annual operations‐and‐maintenance costs should be about $1.4 million, 40 percent of those associated with a pump and treat system over a 20‐year period.  相似文献   

13.
Abstract: Analysis of results from an electrical resistivity survey, a magnetic survey, and an aquifer test performed on the Leona River floodplain in south‐central Texas indicates that ground‐water discharge from the Edwards Aquifer through the Leona River floodplain may be as great as 91.7 Mm3/year. When combined with an estimate of 8.8 Mm3/year for surface flow in the Leona River, as much as 100.5 Mm3/year could be discharged from the Edwards Aquifer through the Leona River floodplain. A value of 11,200 acre‐ft/year (13.82 Mm3/year) has been used as the calibration target in existing ground‐water models for total discharge from Leona Springs and the Leona River. Including ground water or underflow discharge would significantly increase the calibration target in future models. This refinement would improve the conceptualization of ground‐water flow in the western portion of the San Antonio segment of the Edwards Aquifer and would thereby allow for more accurate assessment and management of the ground‐water resources provided by the Edwards Aquifer.  相似文献   

14.
There is an increasing need to strategize and plan irrigation systems under varied climatic conditions to support efficient irrigation practices while maintaining and improving the sustainability of groundwater systems. This study was undertaken to simulate the growth and production of soybean [Glycine max (L.)] under different irrigation scenarios. The objectives of this study were to calibrate and validate the CROPGRO‐Soybean model under Texas High Plains’ (THP) climatic conditions and to apply the calibrated model to simulate the impacts of different irrigation levels and triggers on soybean production. The methodology involved combining short‐term experimental data with long‐term historical weather data (1951–2012), and use of mechanistic crop growth simulation algorithms to determine optimum irrigation management strategies. Irrigation was scheduled based on five different plant extractable water levels (irrigation threshold [ITHR]) set at 20%, 35%, 50%, 65%, and 80%. The calibrated model was able to satisfactorily reproduce measured leaf area index, biomass, and evapotranspiration for soybean, indicating it can be used for investigating different strategies for irrigating soybean in the THP. Calculations of crop water productivity for biomass and yield along with irrigation water use efficiency indicated soybean can be irrigated at ITHR set at 50% or 65% with minimal yield loss as compared to 80% ITHR, thus conserving water and contributing toward lower groundwater withdrawals. Editor's note: This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

15.
The Denver Basin Aquifer System (DBAS) is a critical groundwater resource along the Colorado Front Range. Groundwater depletion has been documented over the past few decades due to the increased water use among users, presenting long‐term sustainability challenges. A spatiotemporal geostatistical analysis is used to estimate potentiometric surfaces and evaluate groundwater storage changes between 1990 and 2016 in each of the four DBAS aquifers. Several key depletion patterns and spatial water‐level changes emerge in this work. Hydraulic head changes are the largest in the west‐central side of the DBAS and have decreased in some areas by up to 180 m since 1990, while areas to the northwest show increases in hydraulic head by over 30.5 m. The Denver and Arapahoe aquifers show the largest groundwater storage losses, with the highest rates occurring in the 2000s. The results highlight uncertainty in the volumetric predictions under various storage coefficient calculations and emphasize the importance of representative aquifer characterization. The observed groundwater storage depletions are due to a combination of factors, which include population growth increasing the demand for water, variable precipitation, and drought influencing recharge, and increased groundwater pumping. The methods applied in this study are transferable to other groundwater systems and provide a framework that can help assess groundwater depletion and inform management decisions at other locations.  相似文献   

16.
Records for two rivers flowing in a Sand Hill area are used to derive a value for the infiltration reaching the water table. The infiltration is 0.23 feet per year which is 13 per cent of the precipitation.  相似文献   

17.
Payne, Scott M. and William W. Woessner, 2010. An Aquifer Classification System and Geographical Information System-Based Analysis Tool for Watershed Managers in the Western U.S. Journal of the American Water Resources Association (JAWRA) 46(5):1003-1023. DOI: 10.1111/j.1752-1688.2010.00472.x Abstract: Aquifers and groundwater systems can be classified using a variety of independent methods to characterize geologic and hydraulic properties, the degree of connection with surface water, and geochemical conditions. In light of a growing global demand for water, an approach for classifying groundwater systems at the watershed scale is needed. A comprehensive classification system is proposed that combines recognized methods and new approaches. The purpose of classification is to provide groundwater professionals, policy makers, and watershed managers with a widely applicable and repeatable system that reduces sometimes cumbersome complex databases and analyzes to straightforward terminology and graphical representations. The proposed classification system uses basin geology, aquifer productivity, water quality, and the degree of groundwater/surface water connection as classification criteria. The approach is based on literature values, reference databases, and fundamental hydrologic and hydrogeologic principles. The proposed classification system treats dataset completeness as a variable and includes a tiered assessment protocol that depends on the quality and quantity of data. In addition, it assembles and catalogs groundwater information using a consistent set of nomenclature. It is designed to analyze and display results using Geographical Information System mapping tools.  相似文献   

18.
ABSTRACT: Principal U.S. phosphate production is from central Florida where mining, processing, and waste disposal practices intimately associate the industry with water resouces. Available radium-226 data from 1966 and from 1973–1976 in mined and unmined mincralized areas and nonmineralized areas in the primary study area in Polk, Hardee, Hillsborough, Manatee, and De Soto counties were studied using log-normal probability plots and nonparametric statistical tests for significant difference as functions of time, depth, and location. Plots of radium in the water table and Floridan aquifers for mineralized and nonmineralized areas indicate that neither phosphate mineralization nor the industry is a probable factor. For the Lower Floridan aquifer, three separate radium populations are indicated with geometric means of 0.7, 3, and 10 pCi/1. Geometric mean radium-226 content of the water table aquifer is 0.17 pCi/1. Radium in the Floridan aquifer in Manatee and Sarasota Counties is elevated relative to that in the water table and in other areas of Florida. For Sarasota County, geometric mean radium content of the water table is 15 pCi/l versus 7.5 pCi/l in the Floridan. Potential sources include shallow phosphate sediments and monazite sands and possibly crystalline basement rocks or other strata unrelated to phosphatic zones of current economic interest. The existing radium-226 data base is rather marginal in terms of number and spatial distribution of analyses, particularly for the water table and Upper Floridan aquifer. Existing radium data do not substantiate widespread contamination of ground water as a result of the phosphate industry. However, local contamination associated with specific operations has occurred.  相似文献   

19.
The City of Cape May, New Jersey, draws its primary water supply from the Cohansey Aquifer, a unit serving residential, community, and industrial users throughout the Coastal Plain. By the year 2000, projected population growth will impose a peak water demand beyond available supplies. In addition, regional over-pumping threatens the Cohansey with saltwater intrusion, placing the city wells at risk by 1998. In the early-to mid 1990s, three broad categories of water-supply alternatives were evaluated by regional, state, and federal agencies — additional pumping from the Cohansey, conjunctive use of the Cohansey with other aquifers, and desalination of brackish groundwater. An approach was adopted in 1996 which derives up to 2 MGD from desalination of brackish groundwater, with the remaining peak demand satisfied by short-term pumpage from existing wells in the Cohansey. The first of two wells has been completed, yielding 1.4 MGD of brackish groundwater. Similar performance from the second well will exceed the design goal. When the initial system comes on line during the summer of 1998, New Jersey will have its first public water supply derived from desalinated groundwater. The use of desalinated groundwater balances competing demands for water resources in the southern Cape Region of New Jersey, allowing continued economic growth while reducing human impacts on a threatened aquifer.  相似文献   

20.
ABSTRACT: The Nebraska Sand Hills have a unique hydrologic system with very little runoff and thick aquifers that constantly supply water to rivers, lakes, and wetlands. A ground water flow model was developed to determine the interactions between ground water and streamflow and to simulate the changes in ground water systems by reduced precipitation. The numerical modeling method includes a water balance model for the vadose zone and MOD‐FLOW for the saturated zone. The modeling results indicated that, between 1979 and 1990, 13 percent of the annual precipitation recharged to the aquifer and annual ground water loss by evapotranspiration (ET) was only about one‐fourth of this recharge. Ground water discharge to rivers accounts for about 96 percent of the streamflow in the Dismal and Middle Loup rivers. When precipitation decreased by half the average amount of the 1979 to 1990 period, the average decline of water table over the study area was 0.89 m, and the streamflow was about 87 percent of the present rate. This decline of the water table results in significant reductions in ET directly from ground water and so a significant portion of the streamflow is maintained by capture of the salvaged ET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号