首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
Abstract: Unpaved roads are a primary sediment source in forested watersheds. Validation of erosion models and improvements to road management require information on road erosion rates and the factors controlling erosion. This study measured sediment yields from twenty ~0.05 ha unsurfaced (native) road plots in Belt Supergroup and glacial till parent materials of western Montana, and investigated the factors controlling erosion. Annual sediment yields for individual plots ranged from 0 to 96.9 Mg/ha/yr over 3 years (2002‐2004). Annual mean sediment yield ranged from 2.1 Mg/ha in 2003 to 9.9 Mg/ha in 2004 with an overall mean of 5.4 Mg/ha/yr. The mean of log‐transformed sediment yields for sites in glacial till parent materials was higher than Belt Supergroup parent materials (p = 0.063). A regression model with road slope, time since last grading, roadbed gravel content, and precipitation as predictive variables explained 68% of the variability in sediment yield (F = 28.2; p < 0.0001). Road erosion in western Montana is limited by low erodibility of the dominant parent materials and low rainfall. Management procedures such as reducing the frequency of grading can significantly reduce sediment yields from forest roads.  相似文献   

2.
/ Various types of recreational traffic impact hiking trails uniquely and cause different levels of trail degradation; however, trail head restrictions are applied similarly across all types of packstock. The purpose of this study was to assess the relative physical impact of hikers, llamas, and horses on recreational trails. Horse, llama, and hiker traffic were applied to 56 separate plots on an existing trail at Lubrecht Experimental Forest in western Montana. The traffic was applied to plots at intensities of 250 and 1000 passes along with a no-traffic control under both prewetted and dry trail conditions. Soil erosion potential was assessed by sediment yield and runoff (using a Meeuwig type rainfall simulator), changes in soil bulk density, and changes in soil surface roughness. Soil moisture, slope, and rainfall intensity were recorded as independent variables in order to evaluate the extent that they were held constant by the experimental design. Horse traffic consistently made more sediment available for erosion from trails than llama, hiker, or no traffic when analyzed across wet and dry trail plots and high and low intensity traffic plots. Although total runoff was not significantly affected by trail user, wet trail traffic caused significantly greater runoff than dry trail traffic. Llama traffic caused a significant increase in sediment yield compared to the control, but caused erosion yields not significantly different than hiker traffic. Trail traffic did not increase soil compaction on wet trails. Traffic applied to dry trail plots generally resulted in a significant decrease in soil bulk density compared to the control. Decreased soil bulk density was negatively correlated with increased sediment yield and appeared to result in increased trail roughness for horse traffic compared to hiker or llama traffic. Differences described here between llama and horse traffic indicate that trail managers may want to consider managing packstock llamas independent of horses.KEY WORDS: Recreational impacts; Sediment yield; Trail degradation  相似文献   

3.
Few economic studies are available to measure off-highway vehicle recreation benefits foregone when trails must be closed to protect the environment. This paper estimates the non-market benefits associated with off-highway vehicle (OHV) recreation on National Forest lands in Larimer County, Colorado. We use a contingent valuation model (CVM) to estimate benefits to OHV users, which includes dirt bike riders, all terrain vehicle (ATV) riders, and 4-wheel drive (4 × 4) users. Using CVM we find the mean consumer surplus estimates to be $78 per person per day. These results are consistent with the few previous estimates of OHV recreation benefits. This equates to a per trail per summer consumer surplus of at least between $219,467 and $296,876, and a county level surplus per summer to be at least between $796,447 and $1,077,367. These benefits can be compared to environmental costs to obtain a more complete picture of the effects of trail closure, as well as the negative spillovers to non-motorized users.  相似文献   

4.
Many recreation impact studies have focused on summer activities, but the environmental impact of winter recreation is poorly characterized. This study characterizes the impact of snowshoe/cross-country ski compaction and snowmelt erosion on trails. Trail cross-sectional profiles were measured before and after the winter season to map changes in erosion due to winter recreation. Compacted snow on the trail was 30 % more dense than snowpack off the trail before spring melt out. Snow stayed on the trail 7 days longer. Soil and organic material was transported after spring snowmelt with ?9.5 ± 2.4 cm2 total erosion occurring on the trail transects and ?3.8 ± 2.4 cm2 total erosion occurring on the control transect (P = 0.046). More material was transported on the trail than on the control, 12.9± 2.4 versus 6.0 ± 2.4 cm2 (P = 0.055), however, deposition levels remained similar on the trail and on the control. Snow compaction from snowshoers and cross-country skiers intensified erosion. Trail gradient was found to be significantly correlated to net changes in material on the trail (R 2 = 0.89, ρ = ?0.98, P = 0.005). This study provides a baseline, showing that non-motorized winter recreation does impact soil erosion rates but more studies are needed. Trail managers should consider mitigation such as water bars, culverts and avoiding building trails with steep gradients, in order to reduce loss of soils on trails and subsequent sedimentation of streams.  相似文献   

5.
Trail-based recreation has increased over recent decades, raising the environmental management issue of soil erosion that originates from unsurfaced, recreational trail systems. Trail-based soil erosion that occurs near stream crossings represents a non-point source of pollution to streams. We modeled soil erosion rates along multiple-use (hiking, mountain biking, and horseback riding) recreational trails that approach culvert and ford stream crossings as potential sources of sediment input and evaluated whether recreational stream crossings were impacting water quality based on downstream changes in macroinvertebrate-based indices within the Poverty Creek Trail System of the George Washington and Jefferson National Forest in southwestern Virginia, USA. We found modeled soil erosion rates for non-motorized recreational approaches that were lower than published estimates for an off-road vehicle approach, bare horse trails, and bare forest operational skid trail and road approaches, but were 13 times greater than estimated rates for undisturbed forests and 2.4 times greater than a 2-year old clearcut in this region. Estimated soil erosion rates were similar to rates for skid trails and horse trails where best management practices (BMPs) had been implemented. Downstream changes in macroinvertebrate-based indices indicated water quality was lower downstream from crossings than in upstream reference reaches. Our modeled soil erosion rates illustrate recreational stream crossing approaches have the potential to deliver sediment into adjacent streams, particularly where BMPs are not being implemented or where approaches are not properly managed, and as a result can negatively impact water quality below stream crossings.  相似文献   

6.
Trail erosion patterns in Great Smoky Mountains National Park   总被引:3,自引:0,他引:3  
All the maintained trails in Great Smoky Mountains National Park were surveyed for width, depth, and a variety of types of erosion. Trail erosion is related to a number of environmental variables, including vegetation type, elevation, trail slope, and section of the park. Open grass balds and spruce-fir forest are the most erosion-sensitive plant communities, and the xeric oak and pine types are the least sensitive. Trails in virgin or mature forest tend to be in poorer condition than those in successional areas. The most important physical factor is the slope of the trail.Trails in the Tennessee district are in slightly poorer condition, on the average, than those in the North Carolina district, but the Appalachian Trail is more eroded than either. A poor section of the park may have ten times the erosion of a good section. On an allpark basis, water erosion is the most important problem, with 15% of the trail surface affected.A comparison of visitation patterns with trail condition indicates that redistribution of use would help to mitigate some erosion problems. Because trail condition is correlated to physical environmental factors, however, some sites will require intensive maintenance, even if visitation is low.The data from this survey have already been used in environmental analysis of proposed developments within the park and can be applied to long-range planning for the park trail system as a whole.  相似文献   

7.
ABSTRACT: Erosion and sedimentation data from research watersheds in the Silver Creek Study Area in central Idaho were used to test the prediction of logging road erosion using the R1-R4 sediment yield model, and sediment delivery using the “BOISED” sediment yield prediction model. Three small watersheds were instrumented and monitored such that erosion from newly constructed roads and sediment delivery to the mouths of the watersheds could be measured for four years following road construction. The errors for annual surface erosion predictions for the two standard road tests ranged from +31.2 t/ha/yr (+15 percent) to -30.3 t/ha/yr (-63 percent) with an average of zero t/ha/yr and a standard deviation of the differences of 18.7 t/ha/yr. The annual prediction errors for the three watershed scale tests had a greater range from -40.8 t/ha/yr (-70 percent) to +65.3 t/ha/yr (+38 percent) with a mean of -1.9 t/ha/yr and a standard deviation of the differences of 25.2 t/ha/yr. Sediment yields predicted by BOISED (watershed scale tests) were consistently greater (average of 2.5 times) than measured sediment yields. Hillslope sediment delivery coefficients in BOISED appear to be overly conservative to account for average site conditions and road locations, and thus over-predict sediment delivery. Mass erosion predictions from BOISED appear to predict volume well (465 tonnes actual versus 710 tonnes predicted, or a 35 percent difference) over 15 to 20 years, however mass wasting is more episodic than the model predicts.  相似文献   

8.
Although many studies have pointed out the various controlling factors of sediment and nutrient delivery on a plot or watershed scale, little is known on the spatial variability of sediment and nutrient delivery on a regional scale. This study was conducted to reveal regional variations in sediment-associated nutrient delivery in central Belgium. Sediment deposited in 13 small retention ponds was sampled and analyzed for total phosphorus (TP), K, Mg, and Ca content. The TP content of the sediment deposits varied from 510 to 2001 mg P per kg sediment. Nutrients are predominantly fixed on the very fine sediment fraction (<16 microm), which is the reason why the nutrient trap efficiency of the ponds is only a fraction of the sediment trap efficiency. Average nutrient trap efficiency of the studied ponds varies between 4 and 31%, whereas sediment trap efficiency varies between 10 and 72%. For watersheds ranging from 7 to 4873 ha, sediment yield ranged between 1.2 and 20.6 Mg ha(-1) yr(-1), whereas TP export varied from 1.8 to 39.7 kg ha(-1) yr(-1). The observed spatial variability in nutrient losses is primarily attributed to regional variations in erosion and sediment yield values and to a far lesser degree to the spatial variations in fertilizer application. Redistribution of manure in the framework of an agricultural policy may increase the rate of nutrient delivery by ways of erosion and sediment transport.  相似文献   

9.
Worldwide studies show 80%–90% of all sediments eroded from watersheds is trapped within river networks such as reservoirs, ponds, and wetlands. To represent the impact of impoundments on sediment routing in watershed modeling, Soil and Water Assessment Tool (SWAT) developers recommend to model reservoirs, ponds, and wetlands using impoundment tools (ITs). This study evaluates performance of SWAT ITs in the modeling of a small, agricultural watershed dominated by lakes and wetlands. The study demonstrates how to incorporate impoundments into the SWAT model, and discusses and evaluates involved parameters. The study then recommends an appropriate calibration sequence, i.e., landscape parameters calibration, followed by pond/wetlands calibration, then channel parameter calibrations, and lastly, reservoir parameter calibration. Results of this study demonstrate not following SWAT recommendation regarding modeling water land use as an impoundment depreciates SWAT performance, and may lead to misplaced calibration efforts and model over‐calibration. Further, the chosen method to model impoundments’ outflow significantly impacts sediment loads in the watershed, while streamflow simulation is not very sensitive. This study also allowed calculation of mass accumulation rates in modeled impoundments where the annual mass accumulation rate in wetlands (2.3 T/ha/yr) was 39% higher than mass accumulation rate in reservoirs (1.4 T/ha/yr).  相似文献   

10.
Forestry best management practices (BMPs) reduce sedimentation by minimizing soil erosion and trapping sediment. These practices are particularly important in relation to road construction and use due to the heightened potential for sediment delivery at stream crossings. This study quantifies the implementation and effectiveness of BMPs at 75 randomly selected forest road stream crossings on recent timber harvests in the Mountains, Piedmont, and Coastal Plain regions of Virginia. Road characteristics at stream crossings were used to estimate erosion using the Universal Soil Loss Equation for Forests and the Water Erosion Prediction Project for Roads. Stream crossings were evaluated based on the Virginia Department of Forestry (VDOF) BMP manual guidelines and categorized as BMP?, BMP‐standard, or BMP+ based on the quality of road template, drainage, ground cover, and stream crossing structure. BMP implementation scores were calculated for each stream crossing using VDOF audit questions. Potential erosion effects due to upgrading crossings were estimated by adjusting ground cover percentage and approach length parameters in the erosion models. Results indicate that erosion rates decrease as BMP implementation scores increase (p < 0.05). BMP‐standard and BMP+ ratings made up 83% of crossings sampled, with an average erosion rate of 6.8 Mg/ha/yr. Hypothetical improvements beyond standard BMP recommendations provided minimal additional erosion prevention.  相似文献   

11.
The wash from high-speed tourist cruise launches causes erosion of the formerly stable banks of the lower Gordon River within the Tasmanian Wilderness World Heritage Area. Speed and access restrictions on the operation of commercial cruise vessels have considerably slowed, but not halted erosion, which continues on the now destabilized banks. To assess the effectiveness of restrictions, bank erosion and natural revegetation are monitored at 48 sites using erosion pins, survey transects, and vegetation quadrats. The subjectively chosen sites are grouped on the basis of geomorphology and bank materials. The mean measured rate of erosion of estuarine banks slowed from 210 to 19 mm/year with the introduction of a 9 knot speed limit. In areas where cruise vessels continue to operate, alluvial banks were eroded at a mean rate of 11 mm/yr during the three-year period of the current management regime. Very similar alluvial banks no longer subject to commercial cruise boat traffic eroded at the slower mean rate of 3 mm/yr. Sandy levee banks have retreated an estimated maximum 10 m during the last 10–15 years. The mean rate of bank retreat slowed from 112 to 13 mm/yr with the exclusion of cruise vessels from the leveed section of the river. Revegetation of the eroded banks is proceeding slowly; however, since the major bank colonizers are very slow growing tree species, it is likely to be decades until revegetation can contribute substantially to bank stability.  相似文献   

12.
ABSTRACT: The three basins of Reelfoot Lake, which is located in northwestern Tennessee, were investigated using the Cs-137 tracer technique to determine rates of sediment deposition and to estimate the time before the basins will fill with sediment. Blue Basin, the largest of the three basins with 2922 ha, had an average annual sedimentation rate of 0.9 cm/yr from 1984 to 1984. The basin will become too shallow for most boating and recreational activities in about 200 years. Buck Basin, the central basin with 774 ha, had an average annual sedimentation rate of 1.1 cm/yr and will become too shallow for most recreational uses in about 100 years. Upper Blue Basin, the most upstream and smallest basin with 439 ha, had an average annual sedimentation rate of 1.7 cm/yr and will become too shallow for most recreational uses in about 60 years. Two important sources of sediment to Reelfoot Lake are erosion from a large number of soybean fields and channelization of many of the streams that flow into the lake. Changes in land management that would reduce erosion could increase the time the lake would remain usable for recreational activities.  相似文献   

13.
Wetlands in the Rainwater Basin in Nebraska are vulnerable to sediment accumulation from the surrounding watershed. Sediment accumulation has a negative impact on wetland quality by decreasing the depth and volume of water stored, and the plant community species composition and density growing in the wetland. The objective of this study was to determine the amount of sediment that has accumulated in five selected wetlands in the Rainwater Basin in Nebraska. Soil cores were taken at five or six locations along transects across each wetland. This study used the fly ash, which is generated by coal‐burning locomotives that were present generally in the late 1800s and early 1900s, as a marker to quantify the sediment deposition rates. The cores were divided into 5 cm sections and the soils were analyzed using a fly ash extraction and identification technique. Results indicate that the average depth of sediment ranged from 23.00 to 38.00 cm. The annual average depth of sediment accumulation ranged from 0.18 cm/yr to 0.29 cm/yr. The annual sediment accumulation rate from both wind erosion and water erosion in these five sampling wetlands was between 1.946 and 3.225 kg/m2/yr. The results of this research can be used to develop restoration plans for wetlands. The fly ash testing technology can also be applied to other areas with the railroads across the United States.  相似文献   

14.
2 /yr, respectively. Geomorphic evidence indicates that plantation agriculture during the 18th and 19th centuries did not cause severe erosion. Since about 1950 there has been rapid growth in roads and development due to increasing tourism and second-home development. Our field investigations identified the approximately 50 km of unpaved roads as the primary source of anthropogenic sediment. Field measurements of the road network in two catchments led to the development of a vector-based GIS model to predict road surface erosion and sediment delivery. We estimate that road erosion has caused at least a fourfold increase in island-wide sediment yields and that current sedimentation rates are unprecedented. Paving the dirt roads and implementing standard sediment control practices can greatly reduce current sediment yields and possible adverse effects on the marine ecosystems surrounding St. John.  相似文献   

15.
Accelerated erosion and increased sediment yields resulting from changes in land use are a critical environmental problem. Resource managers and decision makers need spatially explicit tools to help them predict the changes in sediment production and delivery due to unpaved roads and other types of land disturbance. This is a particularly important issue in much of the Caribbean because of the rapid pace of development and potential damage to nearshore coral reef communities. The specific objectives of this study were to: (1) develop a GIS-based sediment budget model; (2) use the model to evaluate the effects of unpaved roads on sediment delivery rates in three watersheds on St. John in the US Virgin Islands; and (3) compare the predicted sediment yields to pre-existing data. The St. John Erosion Model (STJ-EROS) is an ArcInfo-based program that uses empirical sediment production functions and delivery ratios to quantify watershed-scale sediment yields. The program consists of six input routines and five routines to calculate sediment production and delivery. The input routines have interfaces that allow the user to adjust the key variables that control sediment production and delivery. The other five routines use pre-set erosion rate constants, user-defined variables, and values from nine data layers to calculate watershed-scale sediment yields from unpaved road travelways, road cutslopes, streambanks, treethrow, and undisturbed hillslopes. STJ-EROS was applied to three basins on St. John with varying levels of development. Predicted sediment yields under natural conditions ranged from 2 to 7Mgkm(-2)yr(-1), while yield rates for current conditions ranged from 8 to 46Mgkm(-2)yr(-1). Unpaved roads are estimated to be increasing sediment delivery rates by 3-6 times for Lameshur Bay, 5-9 times for Fish Bay, and 4-8 times for Cinnamon Bay. Predicted basin-scale sediment yields for both undisturbed and current conditions are within the range of measured sediment yields and bay sedimentation rates. The structure and user interfaces in STJ-EROS mean that the model can be readily adapted to other areas and used to assess the impact of unpaved roads and other land uses sediment production and delivery.  相似文献   

16.
Abstract: Phosphorus and sediment are major nonpoint source pollutants that degrade water quality. Streambank erosion can contribute a significant percentage of the phosphorus and sediment load in streams. Riparian land‐uses can heavily influence streambank erosion. The objective of this study was to compare streambank erosion along reaches of row‐cropped fields, continuous, rotational and intensive rotational grazed pastures, pastures where cattle were fenced out of the stream, grass filters and riparian forest buffers, in three physiographic regions of Iowa. Streambank erosion was measured by surveying the extent of severely eroding banks within each riparian land‐use reach and randomly establishing pin plots on subsets of those eroding banks. Based on these measurements, streambank erosion rate, erosion activity, maximum pin plot erosion rate, percentage of streambank length with severely eroding banks, and soil and phosphorus losses per unit length of stream reach were compared among the riparian land‐uses. Riparian forest buffers had the lowest streambank erosion rate (15‐46 mm/year) and contributed the least soil (5‐18 tonne/km/year) and phosphorus (2‐6 kg/km/year) to stream channels. Riparian forest buffers were followed by grass filters (erosion rates 41‐106 mm/year, soil losses 22‐47 tonne/km/year, phosphorus losses 9‐14 kg/km/year) and pastures where cattle were fenced out of the stream (erosion rates 22‐58 mm/year, soil losses 6‐61 tonne/km/year, phosphorus losses 3‐34 kg/km/year). The streambank erosion rates for the continuous, rotational, and intensive rotational pastures were 101‐171, 104‐122, and 94‐170 mm/year, respectively. The soil losses for the continuous, rotational, and intensive rotational pastures were 197‐264, 94‐266, and 124‐153 tonne/km/year, respectively, while the phosphorus losses were 71‐123, 37‐122, and 66 kg/km/year, respectively. The only significant differences for these pasture practices were found among the percentage of severely eroding bank lengths with intensive rotational grazed pastures having the least compared to the continuous and rotational grazed pastures. Row‐cropped fields had the highest streambank erosion rates (239 mm/year) and soil losses (304 tonne/km/year) and very high phosphorus losses (108 kg/km/year).  相似文献   

17.
Soil analyses and measurements with the Portable In Situ Wind Erosion Laboratory (PI-SWERL) were conducted on 16 soil types in an area heavily affected by off-road vehicle (ORV) driving. Measurements were performed in ORV trails as well as on undisturbed terrain to investigate how ORV driving affects the vulnerability of a soil to emit PM10 (particles < 10 μm), during the driving as well as during episodes of wind erosion. Particular attention is paid to how the creation of a new trail affects those properties of the topsoil that determine its capability to emit PM10. Also, recommendations are given for adequate management of ORV-designed areas. The type of surface (sand, silt, gravel, drainage) is a key factor with respect to dust emission in an ORV trail. Trails in sand, defined in this study as the grain size fraction 63–2000 μm, show higher deflation thresholds (the critical wind condition at which wind erosion starts) than the surrounding undisturbed soil. Trails in silt (2–63 μm) and in drainages, on the other hand, have lower deflation thresholds than undisturbed soil. The increase in PM10 emission resulting from the creation of a new ORV trail is much higher for surfaces with silt than for surfaces with sand. Also, the creation of a new trail in silt decreases the supply limitation in the top layer: the capacity of the reservoir of emission-available PM10 increases. For sand the situation is reversed: the supply limitation increases, and the capacity of the PM10 reservoir decreases. Finally, ORV trails are characterized by a progressive coarsening of the top layer with time, but the speed of coarsening is much lower in trails in silt than in trails in sand or in drainages. The results of this study suggest that, to minimize emissions of PM10, new ORV fields should preferably be designed on sandy terrain rather than in silt areas or in drainages.  相似文献   

18.
Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences, such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y, respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences. Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances (ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale.  相似文献   

19.
The semiarid Carson River — Lahontan Reservoir system in Nevada, United States is highly contaminated with mercury (Hg) from historic mining with contamination dispersed throughout channel and floodplain deposits. Work builds on previous research using a fully dynamic numerical model to outline a complete conceptualization of the system that includes transport and fate of both sorbed and dissolved constituents. Flow regimes are defined to capture significant mechanisms of Hg loading that include diffusion, channel pore water advective flux, bank erosion, and overbank deposition. Advective flux of pore water is required to reduce dilution and likely represents colloidal‐mediated transport. Fluvial concentrations span several orders of magnitude with spatial and temporal trends simulated within 10‐24% error for all modeled species. Over the simulation period, 1991‐2008, simulated loads are 582 kg/yr (THg2+), 4.72 kg/yr (DHg2+), 0.54 kg/yr (TMeHg), and 0.07 kg/yr (DMeHg) with bank erosion processes the principal mechanism of loading for both total and dissolved species. Prediction error in the reservoir is within one‐order of magnitude and considered qualitative; however, simulated results indicate internal cycling within the receiving reservoir accounts for only 1% of the reservoir's water column contamination, with river channel sediment sources more influential in the upper reservoir and bank erosion processes having greater influence in the lower reservoir.  相似文献   

20.
Recreational uses of unsurfaced trails inevitably result in their degradation, with the type and extent of resource impact influenced by factors such as soil texture, topography, climate, trail design and maintenance, and type and amount of use. Of particular concern, the loss of soil through erosion is generally considered a significant and irreversible form of trail impact. This research investigated the influence of several use-related, environmental, and managerial factors on soil loss on recreational trails and roads at Big South Fork National River and Recreation Area, a unit of the U.S. National Park Service. Regression modeling revealed that trail position, trail slope alignment angle, grade, water drainage, and type of use are significant determinants of soil loss. The introduction of individual and groups of variables into a series of regression models provides improved understanding and insights regarding the relative influence of these variables, informing the selection of more effective trail management actions. Study results suggest that trail erosion can be minimized by avoiding “fall-line” alignments, steep grades, and valley-bottom alignments near streams, installing and maintaining adequate densities of tread drainage features, applying gravel to harden treads, and reducing horse and all-terrain vehicle use or restricting them to more resistant routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号