首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
An investigation was carried out on the performance of an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted cheese whey when submitted to different feed strategies and volumetric organic loads (VOL). Polyurethane foam cubes were used as support for biomass immobilization and stirring was provided by helix impellers. The reactor with a working volume of 3 L treated 2 L of wastewater in 8-h cycles at 500 rpm and 30 degrees C. The organic loads applied were 2, 4, 8 and 12 g COD L(-1) d(-1), obtained by increasing the feed concentration. Alkalinity was supplemented at a ratio of 50% NaHCO(3)/COD. For each organic load applied three feed strategies were tested: (a) batch operation with 8-h cycle; (b) 2-h fed-batch operation followed by 6-h batch; and (c) 4-h fed-batch followed by 4-h batch. The 2-h fed-batch operation followed by 6-h batch presented the best results for the organic loads of 2 and 4 g COD L(-1) d(-1), whereas the 4-h fed-batch operation followed by 4-h batch presented results slightly inferior for the same organic loads and the best results at organic loads of 8 and 12 g COD L(-1) d(-1). The concentration of total volatile acids varied with fill time. For the higher fill times maximum concentrations were obtained at the end of the cycle. Moreover, no significant difference was detected in the maximum concentration of total volatile acids for any of the investigated conditions. However, the maximum values of propionic acid tended to decrease with increasing fill time considering the same organic load. Microbiological analyses revealed the presence of Methanosaeta-like structures and methanogenic hydrogenotrophic-like fluorescent bacilli. No Methanosarcina-like structures were observed in the samples.  相似文献   

2.
The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR, with a total volume of 7.2L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358+/-110mg/L. The average effluent COD values were 121+/-31, 208+/-54, 233+/-52, and 227+/-51mg/L, for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52+/-0.05, 0.37+/-0.05, 0.80+/-0.04, and 0.30+/-0.02h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86mg COD/mgVS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor's operational phase. In addition, findings on the microbial community were associated with the reactor's performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found on its surface. Based on the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the most suitable material showing the best performance in terms of efficiency of solids and COD removal.  相似文献   

3.
Data on the performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step increases of organic loading rates (OLR) and to organic shock loads (OSL) are presented and discussed. The tubular reactor (100 cm long and 5 cm diameter) with a useful volume of 1995 mL was filled with polyurethane foam cubic matrices holding immobilized biomass and fed with synthetic wastewater. The reactor was operated at the controlled temperature of 30+/-1 degrees C and hydraulic retention time of 7 h. After about 15 days, the HAIB reactor attained operating stability. Thereafter, it was subjected to step increases of the applied OLR that ranged from 6.8 to 18.8 kg COD/m(3)d. After steady state had been achieved at each step, OSL corresponding to approximately three times the operating OLR were applied for 7 h. No disturbance was observed due to the step increase in OLR. An increase in effluent chemical oxygen demand (COD) and volatile fatty acids (VFA) concentrations and a decrease in the percentage of methane in the biogas were observed due to OSL applications. However, stability of the monitoring parameters was always restored approximately 17 h after the application of OSL for all conditions tested.  相似文献   

4.
An assessment was made of cheese whey treatment in a mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass. The effect of increasing organic load and decreasing influent alkalinity supplementation (as sodium bicarbonate) was analyzed. The reactor operated on 8-h cycles with influent COD concentrations of 500, 1000, 2000 and 4000 mg/L, corresponding to volumetric organic loads of 0.6 to 4.8 mgCOD/L.d. Organic COD removal efficiencies were always above 90% for filtered samples. These results were obtained with an optimized alkalinity supplementation of 50% (ratio between mass of NaHCO3 added and mass of influent mgNaHCO3/mgCOD) in the assays with 500 and 1000 mgCOD/L and of 25% in the assays with 2000 and 4000 mgCOD/L. Initial alkalinity supplementation was equal to the mass of influent COD (100%). The system showed formation of viscous polymer-like substances. These were probably of microbiological origin occurring mainly at influent CODs of 2000 and 4000 mg/L and caused some biomass flotation. This could, however be controlled to enable efficient and stable reactor operation.  相似文献   

5.
Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5, 1.0, 2.0 and 3.0 g SO(4)(2-) L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-) L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-) L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号