首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
/ This study examines similarities and differences between organic and conventional farmers. We explore the factors that underlie farmers' conservation attitudes and behaviors, including demographic and farm characteristics, awareness of and concern for environmental problems associated with agriculture, economic orientation toward farming, and self-reported conservation practices. A series of intensive personal interviews was conducted with 25 farmers in Washtenaw County, Michigan, USA, using both qualitative and quantitative survey methods. The findings indicate that both groups of farmers share a concern for the economic risks associated with farming, although the organic farmers reported a significantly greater concern for long-term sustainability and a greater willingness to incur present risk to gain future benefits. Organic farmers expressed a greater awareness of and concern for environmental problems associated with agriculture. Organic farmers also scored significantly higher on a multifaceted measure of conservation practices, although both groups had a fairly high adoption rate. Implications of these findings are discussed, relative to economic risks of farming, implications for new farmers, effectiveness of conservation education and government programs, and impact of farm size and crop diversity.KEY WORDS: Environmental attitudes; Conservation behaviors; Organic farming; Agricultural sustainability  相似文献   

2.
Since intensive farming practices are essential to produce enough food for the increasing population, farmers have been using more inorganic fertilizers, pesticides, and herbicides. Agricultural lands are currently one of the major sources of non-point source pollution. However, by changing farming practices in terms of tillage and crop rotation, the levels of contamination can be reduced and the quality of soil and water resources can be improved. Thus, there is a need to investigate the amalgamated hydrologic effects when various tillage and crop rotation practices are operated in tandem. In this study, the Soil Water Assessment Tool (SWAT) was utilized to evaluate the individual and combined impacts of various farming practices on flow, sediment, ammonia, and total phosphorus loads in the Little Miami River basin. The model was calibrated and validated using the 1990–1994 and 1980–1984 data sets, respectively. The simulated results revealed that the SWAT model provided a good simulation performance. For those tested farming scenarios, no-tillage (NT) offered more environmental benefits than moldboard plowing (MP). Flow, sediment, ammonia, and total phosphorus under NT were lower than those under MP. In terms of crop rotation, continuous soybean and corn–soybean rotation were able to reduce sediment, ammonia, and total phosphorus loads. When the combined effects of tillage and crop rotation were examined, it was found that NT with continuous soybean or corn–soybean rotation could greatly restrain the loss of sediments and nutrients to receiving waters. Since corn–soybean rotation provides higher economic revenue, a combination of NT and corn–soybean rotation can be a viable system for successful farming.  相似文献   

3.
Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.  相似文献   

4.
Tillage has been and will always be integral to crop production. Tillage can result in the degradation of soil, water, and air quality. Of all farm management practices, tillage may have the greatest impact on the environment. A wide variety of tillage equipment, practices and systems are available to farmers, providing opportunities to enhance environmental performance. These opportunities have made tillage a popular focus of environmental policies and programs such as environmental indicators for agriculture. This paper provides a very brief examination of the role of tillage in crop production, its effect on biophysical processes and, therefore, its impact on the environment. Models of biophysical processes are briefly examined to demonstrate the importance of tillage relative to other farm management practices and to demonstrate the detail of tillage data that these models can demand. The focus of this paper is an examination of the use of information on tillage in Canada's agri-environmental indicators initiative, National Agri-environmental Health Analysis and Reporting Program (NAHARP). Information on tillage is required for several of the indicators in NAHARP. The type of data used, its source, and its quality are discussed. Recommendations regarding the collection of tillage data and use of tillage information are presented.  相似文献   

5.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   

6.
This study explores different socio-economic and institutional factors influencing the adoption of improved soil conservation technology (ISCT) on Bari land (Rainfed outward sloping terraces) in the Middle Mountain region of Central Nepal. Structured questionnaire survey and focus group discussion methods were applied to collect the necessary information from farm households. The logistic regression model predicted seven factors influencing the adoption of improved soil conservation technology in the study area including years of schooling of the household head, caste of the respondent, land holding size of the Bari land, cash crop vegetable farming, family member occupation in off farm sector, membership of the Conservation and Development Groups, and use of credit. The study showed that technology dissemination through multi-sectoral type community based local groups is a good option to enhance the adoption of improved soil conservation technology in the Middle Mountain farming systems in Nepal. Planners and policy makers should formulate appropriate policies and programs considering the farmers' interest, capacity, and limitation in promoting improved soil conservation technology for greater acceptance and adoption by the farmers.  相似文献   

7.
The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.  相似文献   

8.
Protected Landscapes (PLs) are increasingly used in Norway to conserve cultural (human modified) landscapes. In many cases the maintenance of agricultural activities in PLs is required to preserve landscape character. Whilst research exists on land conservation policies in general, the particular effects of PL on management and adjustment of the farms involved have not received attention in the literature. We present results from a questionnaire sent to owners of agricultural land within PLs in Norway. Whilst landowners were divided upon the effects of PLs on farm management, the economic situation of the farm was little affected. Furthermore, changes in farm management after the establishment of a PL did not seem to have been driven by the establishment of the PLs per se. Most importantly, farm management changes were related to potential options to develop the farm and its land. A statistical model showed that PL-farms did not differ significantly from farms outside PL in the development of their land use or animal husbandry. Our findings thus indicate that the establishment of PL played a minor role as a driving force of changes in farm management and farm income.  相似文献   

9.
Varghese, Shalet Korattukudy, Jeroen Buysse, Aymen Frija, Stijn Speelman, and Guido Van Huylenbroeck, 2012. Are Investments in Groundwater Irrigation Profitable? A Case of Rice Farms from South India. Journal of the American Water Resources Association (JAWRA) 1‐15. DOI: 10.1111/j.1752‐1688.2012.00690.x Abstract: This article examines the profitability of cultivating double rice under bore well irrigation, given the cumulative interference of and reduced life span of wells, and thus increases the cost of groundwater extraction and use. The overexploitation of groundwater is a common stock problem and the cultivation of water intensive crops, such as rice, further exacerbates the overdraft of groundwater. Under these circumstances, we quantify the marginal benefit of irrigation investments in rice farming by estimating the probability of having a double rice crop as a function of the investment made in wells. Using this information, we explore profit maximization behavior of farms with a mathematical programming model to derive individual economic optima of irrigation costs. The results demonstrate that the ongoing overexploitation of groundwater, and its use to cultivate an economically inefficient crop, such as rice, has resulted in low profitability at farm level. A sensitivity analysis found that even when the investment in irrigation wells is reduced by 70%, small farms are still not economically efficient, thereby confirming the Tragedy of the Commons. Raising awareness amongst farmers with regard to the economics of irrigation would facilitate the participatory implementation of control mechanisms to regulate groundwater extraction.  相似文献   

10.
Farmers in a southwestern Ontario watershed were surveyed to determine factors influencing their attitudes towards adoption of soil conservation practices. The majority of farmers in the watershed were internally motivated which indicates they believe that their own actions determine their successes and failures. Most respondents were also environmentally oriented. However, although many farmers in the study area have adopted crop rotations and cross-slope tillage, the adoption rate of conservation tillage is low. The survey suggests that the low adoption rate may be more a function of perceived economic risk associated with the tillage practice than lack of farmer motivation.  相似文献   

11.
Pluriactivity of farms, or part-time farming, is a common feature of agriculture in all countries regardless of their socioeconomic system and level of development. Currently, pluriactivity is related to the values of sustainable agriculture. The objective of this study is to delineate those specific characteristics of pluriactive farms that contribute to sustainable agriculture. In rural areas of Boetia in Greece, a socioeconomic survey was carried out on 114 farms to determine the types of farming applied. The results demonstrate that pluriactivity is a stable component of the agricultural structure in the rural areas of Boetia. It is widespread in plains, but its presence is more important in mountainous and semimountainous areas. The choice of young farmers is to opt for pluriactivity. Farm size does not differ between pluriactive and full-time farms. Pluriactive and full- time farms use the same level of input and get the same output for the same type of crop. However, pluriactive farmers under the same land-productive conditions are oriented toward a more extensive farming system, managing their land with crops that need less inputs. Considering these findings, it can be claimed that pluriactivity can contribute to diminishing the demand on natural resources in favored (level and irrigated) areas, to continue agricultural production in unfavorable (mountainous and semimountainous) areas, and to help the sustenance of the rural population.  相似文献   

12.
The international competitiveness of the New Zealand (NZ) dairy industry is built on low cost clover-based systems and a favourable temperate climate that enables cows to graze pastures mostly all year round. Whilst this grazed pasture farming system is very efficient at producing milk, it has also been identified as a significant source of nutrients (N and P) and faecal bacteria which have contributed to water quality degradation in some rivers and lakes. In response to these concerns, a tool-box of mitigation measures that farmers can apply on farm to reduce environmental emissions has been developed. Here we report the potential reduction in nutrient losses and costs to farm businesses arising from the implementation of individual best management practices (BMPs) within this tool-box. Modelling analysis was carried out for a range of BMPs targeting pollutant source reduction on case-study dairy farms, located in four contrasting catchments. Due to the contrasting physical resources and management systems present in the four dairy catchments evaluated, the effectiveness and costs of BMPs varied. Farm managements that optimised soil Olsen P levels or used nitrification inhibitors were observed to result in win-win outcomes whereby nutrient losses were consistently reduced and farm profitability was increased in three of the four case study farming systems. Other BMPs generally reduced nutrient and faecal bacteria losses but at a small cost to the farm business. Our analysis indicates that there are a range of technological measures that can deliver substantial reductions in nutrient losses to waterways from dairy farms, whilst not increasing or even reducing other environmental impacts (e.g. greenhouse gas emissions and energy use). Their implementation will first require clearly defined environmental goals for the catchment/water body that is to be protected. Secondly, given that the major sources of water pollutants often differed between catchments, it is important that BMPs are matched to the physical resources and management systems of the existing farm businesses.  相似文献   

13.
The rapid increase of phosphorus (P) use in farming has raised concerns regarding its conservation and environmental impact. Increasing the P use efficiency (PUE) is an approach to mitigating these adverse impacts. In this study, we applied substance flow analysis (SFA) to establish a life-cycle P use efficiency model to determine the life-cycle PUE of the farming system used in Anhui Province in 2011, which is typical of the agriculture practiced in central China. Based on this model, the P flows and PUEs of five subsystems were identified and quantified: crop farming, crop processing, livestock breeding, rural living, and urban living. The three largest P flows were found in the crop farming and livestock breeding subsystems; it can therefore be concluded that these subsystems have substantial impacts on the entire farming system. In contrast, the PUEs of crop farming, rural consumption, and livestock breeding subsystems presented the three lowest PUEs (58.79%, 71.75%, and 76.65%, respectively). These results were also consistent with the finding that the greatest P losses occurred in crop farming and livestock breeding. Consequently, the study proposes that great potential exists for increasing PUEs in the farming system of Anhui, and several of the most promising measures could be combined for improving PUEs. Finally, the study assesses data quality and presents a sensitivity analysis for use in interpreting the results. The study also shows that improving PUE and decreasing P losses in farming systems through improved nutrient management must be considered an important issue, and this study represents valuable experience in resource conservation and agricultural development in China.  相似文献   

14.
Cotton cropping in Pakistan uses substantial quantities of resources and adversely affects the environment with pollutants from the inputs, particularly pesticides. A question remains regarding to what extent the reduction of such environmental impact is possible without compromising the farmers’ income. This paper investigates the environmental, technical, and economic performances of selected irrigated cotton-cropping systems in Punjab to quantify the sustainability of cotton farming and reveal options for improvement. Using mostly primary data, our study quantifies the technical, cost, and environmental efficiencies of different farm sizes. A set of indicators has been computed to reflect these three domains of efficiency using the data envelopment analysis technique. The results indicate that farmers are broadly environmentally inefficient; which primarily results from poor technical inefficiency. Based on an improved input mix, the average potential environmental impact reduction for small, medium, and large farms is 9, 13, and 11 %, respectively, without compromising the economic return. Moreover, the differences in technical, cost, and environmental efficiencies between small and medium and small and large farm sizes were statistically significant. The second-stage regression analysis identifies that the entire farm size significantly affects the efficiencies, whereas exposure to extension and training has positive effects, and the sowing methods significantly affect the technical and environmental efficiencies. Paradoxically, the formal education level is determined to affect the efficiencies negatively. This paper discusses policy interventions that can improve the technical efficiency to ultimately increase the environmental efficiency and reduce the farmers’ operating costs.  相似文献   

15.
Economic costs, water quantity/quality benefits, and cost effectiveness of agricultural best management practices (BMPs) at a watershed scale are increasingly examined using integrated economic‐hydrologic models. However, these models are typically complex and not user‐friendly for examining the effects of various BMP scenarios. In this study, an open source geographic information system (GIS)‐based decision support system (DSS), named the watershed evaluation of BMPs (WEBs), was developed for creating BMP scenarios and simulating economic costs and water quantity/quality benefits at farm field, subbasin, and watershed scales. This DSS or WEBs interface integrated a farm economic model, the Soil and Water Assessment Tool (SWAT), and an optimization model within Whitebox Geospatial Analysis Tools (GAT), an open source GIS software. The DSS was applied to the 14.3‐km2 Gully Creek watershed, a coastal watershed in southern Ontario, Canada that drains directly into Lake Huron. BMPs that were evaluated included conservation tillage, nutrient management, cover crop, and water and sediment control basins. In addition to assessing economic costs, water quantity/quality benefits, and cost effectiveness of BMPs, the DSS can be also used to examine prioritized BMP types/locations and corresponding economic and water quantity/quality tradeoffs in the study watershed based on environmental targets or budget constraints. Further developments of the DSS including interface transfer to other watersheds are also discussed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

16.
Organic farming is expected to contribute to conserving national biodiversity on farms, especially remnant, old, and undisturbed small biotopes, forests, and permanent grassland. This objective cannot rely on the legislation of organic farming solely, and to succeed, farmers need to understand the goals behind it. A set of indicators with the purpose of facilitating dialogues between expert and farmer on wildlife quality has been developed and tested on eight organic farms. “Weed cover in cereal fields,” was used as an indicator of floral and faunal biodiversity in the cultivated land, and “uncultivated biotope area” on the farm was used as a general measure of wildlife habitats. Functional grouping of herbaceous plants (discriminating between “high conservation value” plant species and “competitive”/“ruderal” species) and low mobility butterflies were used as indicators of conservation value, especially focusing on the few sites left with considerable remnant conservation value. The dialog processes revealed that the organic farmers’ ideas and goals of conservation of wildlife quality were not necessarily the same as for biologists; the farmers expressed very different opinions on the biological rooted idea, that wildlife quality is related to the absence of agricultural impact. However, farmers also stated that the information given by the indicators and especially the dialogue with the biologist had influenced their perception and awareness of wildlife. We conclude that, combined with a dialogue process, using these indicators when mapping wildlife quality could be an important key component of a farm wildlife management advisory tool at farm level.  相似文献   

17.
Abstract: An integrated economic and environmental modeling system was developed for evaluating agro‐environmental policies and practices implemented on large scales. The modeling system, the Comprehensive Economic and Environmental Optimization Tool‐Macro Modeling System (CEEOT‐MMS), integrates the Farm‐level Economic Model (FEM) and the Agricultural Policy Environmental eXtender (APEX) model, as well as national databases and clustering and aggregation algorithms. Using micro simulations of statistically derived representative farms and subsequent aggregation of farm‐level results, a wide range of agricultural best management practices can be investigated within CEEOT‐MMS. In the present study, CEEOT‐MMS was used to evaluate the economic and water quality impacts of nitrogen (N) and phosphorus (P) based manure application rates when implemented on all animal feeding operations in the State of Texas. Results of the study indicate that edge‐of‐field total P losses can be reduced by about 0.8 kg/ha/year or 14% when manure applications are calibrated to supply all of the recommended crop P requirements from manure total P sources only, when compared to manure applications at the recommended crop N agronomic rate. Corresponding economic impacts are projected to average a US$4,800 annual cost increase per farm. Results are also presented by ecological subregion, farm type, and farm size categories.  相似文献   

18.
The control and prevention of nutrient pollution from fish farming plays an essential role in the French regulatory framework. Assessing nutrient emissions from fish farms is important in terms of farm authorization, taxation, and monitoring. Currently employed strategies involve both water sampling and empirical modeling. This article reports the work and outcomes of an expert panel that evaluated existing methodologies and their possible alternatives. The development and evaluation of a nutrient-balance approach was assessed as a potential alternative to currently used methodologies. A previously described nutrient-balance model was suggested and parameterized using expert choice, and its validity and applicability were assessed. The results stress that the nutrient-balance model provides more robust and relatively conservative waste estimates compared to the currently used methodologies. Sensitivity of the approach to the uneven data quality available at farm level, difficulties of on-farm measurements, as well as model requirements and limitations are discussed.  相似文献   

19.
ABSTRACT: EPIC, a soil erosion/plant growth simulation model, is used to simulate nitrogen losses for 120 randomly selected and previously surveyed cropland sites. Simulated nitrogen losses occur through volatilization, surface water and soil runoff, subsurface lateral flow, and leaching. Physical and crop management variables explain a moderate but significant proportion of the variation in nitrogen losses. Site slope and tillage have offsetting effects on surface and ground water losses. Nitrogen applications in excess of agronomic recommendations and manure obtained off the farm and applied to the sites are significant contributors to nitrogen losses. Farm characteristics such as production of confined livestock, total manure nitrogen available, and farm income per cropland acre explain a relatively large portion of the variability in manure nitrogen applied to survey sites. The results help to identify farm characteristics that can be used to target nutrient management programs. Simulation modeling provides a useful tool for investigating variables which contribute to agricultural nitrogen losses.  相似文献   

20.
Quantification of the effects of management programs on water quality is critical to agencies responsible for water resource protection. This research documents reductions in stream water phosphorus (P) loads resulting from agricultural best management practices (BMPs) implemented as part of an effort to control eutrophication of Cannonsville Reservoir, a drinking water supply for New York City. Dairy farms in the upstate New York reservoir basin were the target of BMPs designed to reduce P losses. A paired watershed study was established on one of these farms in 1993 to evaluate changes in P loading attributable to implementation of BMPs that included manure management, rotational grazing, and improved infrastructure. Intensive stream water monitoring provided data to calculate P loads from the 160-ha farm watershed for all runoff events during a two-year pre-treatment period and a four-year post-treatment period. Statistical control for inter-annual climatic variability was provided by matched P loads from a nearby 86-ha forested watershed, and by several event flow variables measured at the farm. A sophisticated multivariate analysis of covariance (ANCOVA) provided estimates of both seasonal and overall load reductions. Statistical power and the minimum detectable treatment effect (MDTE) were also calculated. The results demonstrated overall event load reductions of 43% for total dissolved phosphorus (TDP) and 29% for particulate phosphorus (PP). Changes in farm management practices and physical infrastructure clearly produced decreases in event P losses measurable at the small watershed scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号