首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The occurrence of butyltin (BT) compounds in more than 50 recent sediment samples of the Iberian Peninsula, collected in the harbours of the western Mediterranean Sea (Spain) and the North Atlantic Ocean (Portugal), including domestic and industrial sewage disposal sites, has been assessed. The highest levels of tributyltin (TBT) (7673 μg kg?1 dry wt.) were detected in commercial harbours associated with inputs from large vessels. However, relatively high TBT values (about 2150 μg kg?1 dry wt.) were also detected in fishing and recreational boating areas. Spanish marinas and harbours are more polluted in terms of TBT (5–7673 μg kg?1 dry wt.) compared to those in Portugal (4–12 μg kg?1 dry wt.). Generally, the Mediterranean sediments show a BT distribution characterized by the predominance of TBT over the degradation products dibutyl (DBT) and monobutyltin (MBT), indicating the presence of recent inputs, in contrast to the Portuguese coastal distribution. Calculation of butyltin degradation indexes (BDI) confirmed a different trend, depending on the area. Furthermore, a comparative study of the occurrence of BT in different sewage sludge disposal sites shows that domestic primary sewage sludge effluents can contribute to coastal BT pollution, but to a lesser extent when compared with harbours. Historical trends (1995–2003) for Barcelona harbour reveal that BT regulations on the use of TBT-based antifouling paints have not been fully effective. Finally, a comparison against the existing sediment quality guidelines (SQGs) indicated that acute toxic effects could only be expected for TBT in some Mediterranean harbours; conversely, in every North Atlantic Ocean station, a lesser environmental threat for the harbour benthic community is expected.  相似文献   

2.
The bioavailability of cobalt and its transfer from soil to vegetables and rice were investigated. Among 312 soils collected from vegetable and paddy fields in the suburban areas of some major cities of Fujian Province, southeast China, total soil Co ranged from 3.5 to 21.7 mg kg?1, indicating a slight accumulation compared with the background value of the province. DTPA extracted 0.1–8.5% of soil total Co. Total and DTPA-extractable Co correlated with soil pH, CEC, free Fe, total Mn, clay and silt content more significantly in paddy soils than in the soils from vegetable fields. The average Co concentrations in the edible parts of vegetables and rice were 15.4 μg kg?1 and 15.5 μg kg?1, respectively. The transfer factor (the ratio of plant Co to soil DTPA-extractable Co, TFDTPA) ranged from 0.003 to 0.126 with a median of 0.049. The TFDTPA decreased in the order of leafy vegetables > fruit vegetables > root vegetables > rice. The TFDTPA of all crops decreased with increasing DTPA-extractable Co. Increase in pH, CEC, organic matter, clay, silt, free iron and total Mn limited the soil-to-plant transfer of Co to varying degrees. The transfer of Co from the soils to the edible parts of the crops was lower than that of Zn, Cu and Cd, but higher than that of Pb in the same areas. The concentrations of Co in rice and vegetables in the study areas were considered to be safe for the local residents because of the slight anthropogenic input and the low transfer potential to the edible parts of Co from the soils.  相似文献   

3.
This investigation deals with the characterization carried out in zones around two pipeline pumping stations and one pipeline right-of-way in the north of Mexico. In particular those areas where contamination was evaluated: (a) south area of the separation ditch in the Avalos station, (b) the area between the separation ditch at the Avalos station, (c) km 194 + 420 of the Moctuzma station, and (d) km 286 + 900 in the Candelaria station. Results of this investigation showed that only four samples showed TPH values higher than the Mexican limit for 2004: AVA 1B, with 21,191 mg kg?1; AVA 1C, with 9348 mg kg?1; AVA 2B, with 13,970 mg kg?1; and MOC 2A, with 4108 mg kg?1.None of the sampled points showed the presence of PAHs at values higher than those found in the Mexican or American legislations. PAH were detected in the range of 0.0004 and 13.05 mg kg?1.It is suggested to implement surfactant soil washing as a remediation technique for the approximately 600 m3 that need to be treated.  相似文献   

4.
Recently, the concept of pollution-safe cultivars (PSCs) was proposed to minimize the influx of pollutants to the human food chain. Variations in lead (Pb) uptake and translocation among Chinese cabbage (Brassica pekinensis L.) cultivars were investigated in a pot-culture experiment and a field-culture experiment to screen out Pb-PSCs for food safety. The results of the pot-culture experiment showed that shoot Pb concentrations under two Pb treatments (500 and 1500 mg kg?1) varied significantly (p < 0.05) between cultivars, with average values of 3.01 and 6.87 mg kg?1, respectively. Enrichment factors (EFs) and translocation factors (TFs) in cultivars were less than 0.50 and varied significantly (p < 0.05) between cultivars. Shoot Pb concentrations in 12 cultivars under treatment T1 (500 mg kg?1) were lower than 2.0 mg kg?1. The field-culture experiment further confirmed Qiuao, Shiboqiukang and Fuxing 80 as Pb-PSCs, which were suitable to be cultivated in low-Pb (<382.25 mg kg?1) contaminated soils and harmless to human health as foods.  相似文献   

5.
Use of anionic polyacrylamide (PAM) to control phosphorus (P) losses from a Chinese purple soil was studied in both a laboratory soil column experiment and a field plot experiment on a steep slope (27%). Treatments in the column study were a control, and PAM mixed uniformly into the soil at rates of 0.02, 0.05, 0.08, 0.10, and 0.20%. We found that PAM had an important inhibitory effect on vertical P transport in the soil columns, with the 0.20% PAM treatment having the greatest significant reduction in leachate soluble P concentrations and losses resulting from nine leaching periods. Field experiments were conducted on 5 m wide by 21 m long natural rainfall plots, that allowed collection of both surface runoff and subsurface drainage water. Wheat was planted and grown on all plots with typical fertilizer applied. Treatments included a control, dry PAM at 3.9 kg ha?1, dry PAM at 3.9 kg ha?1 applied together with lime (CaCO3 at 4.9 t ha?1), and dry PAM at 3.9 kg ha?1 applied together with gypsum (CaSO4·2H2O at 4 t ha?1). Results from the field plot experiment in which 5 rainfall events resulted in measurable runoff and leachate showed that all PAM treatments significantly reduced runoff volume and total P losses in surface runoff compared to the control. The PAM treatments also all significantly reduced water volume leached to the tile drain. However, total P losses in the leachate water were not significantly different due to the treatments, perhaps due to the low PAM soil surface application rate and/or high experimental variability. The PAM alone treatment resulted in the greatest wheat growth as indicated by the plant growth indexes of wheat plant height, leaf length, leaf width, grain number per head, and dried grain mass. Growth indexes of the PAM with Calcium treatments were significantly lesser. These results indicate that the selection and use of soil amendments need to be carefully determined based upon the most important management goal at a particular site (runoff/nutrient loss control, enhanced plant growth, or a combination).  相似文献   

6.
This paper presents results from a gate-to-gate analysis of the energy balance, greenhouse gas (GHG) emissions and economic efficiency of biochar production from palm oil empty fruit bunches (EFB). The analysis is based on data obtained from EFB combustion in a slow pyrolysis plant in Selangor, Malaysia. The outputs of the slow pyrolysis plant are biochar, syngas, bio-oil and water vapor. The net energy yield of the biochar produced in the Selangor plant is 11.47 MJ kg−1 EFB. The energy content of the biochar produced is higher than the energy required for producing the biochar, i.e. the energy balance of biochar production is positive. The combustion of EFB using diesel fuel has the largest energy demand of 2.31 MJ kg−1 EFB in the pyrolysis process. Comparatively smaller amounts of energy are required as electricity (0.39 MJ kg−1 EFB) and for transportation of biochar to the warehouse and the field (0.13 MJ kg−1 EFB). The net greenhouse gas emissions of the studied biochar production account for 0.046 kg CO2-equiv. kg−1 EFB yr−1 without considering fertilizer substitution effects and carbon accumulation from biochar in the soil. The studied biochar production is profitable where biochar can be sold for at least 533 US-$ t−1. Potential measures for improvement are discussed, including higher productivity of biochar production, reduced energy consumption and efficient use of the byproducts from the slow pyrolysis.  相似文献   

7.
Mathematical tools are needed to screen out sites where Joule–Thomson cooling is a prohibitive factor for CO2 geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO2 injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s?1 (0.1 MT yr?1) into moderately warm (>40 °C) and permeable formations (>10?14 m2 (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi).  相似文献   

8.
Phosphorus (P) is a finite and non-substitutable resource that is essential to sustaining high levels of agricultural productivity but is also responsible for environmental problems, e.g., eutrophication. Based on the methodology of Material Flow Analysis, this study attempts to quantify all relevant flows and stocks of phosphorus (P) in Austria, with a special focus on waste and wastewater management. The system is modeled with the software STAN, which considers data uncertainty and applies data reconciliation and error propagation. The main novelty of this work lies in the high level of detail at which flows and stocks have been quantified to achieve a deeper understanding of the system and to provide a sound basis for the evaluation of various management options. The budget confirms on the one hand the dependence of mineral P fertilizer application (2 kg cap−1 yr−1), but it highlights on the other hand considerable unexploited potential for improvement. For example, municipal sewage sludge (0.75 kg cap−1 yr−1) and meat and bone meal (0.65 kg cap−1 yr−1) could potentially substitute 70% of the total applied mineral P fertilizers. However, recycling rates are low for several P flows (e.g., 27% of municipal sewage sludge; 3% of meat and bone meal). Therefore, Austria is building up a remarkable P stock (2.1 kg P cap−1 yr−1), mainly due to accumulation in landfills (1.1 kg P cap−1 yr−1) and agricultural soils (0.48 kg P cap−1 yr−1).  相似文献   

9.
In this study the biosorption of Yellow RL, a metal-complex anionic dye, by dried Rhizopus arrhizus, a filamentous fungus, was investigated as a function of initial solution pH, initial dye concentration and initial salt (sodium chloride) concentration. The fungus exhibited the maximal dye uptake at pH 2 in the absence and in the presence of salt. Dye uptake increased with the dye concentration up to 1000 mg l?1 and diminished considerably in the presence of increasing concentrations of salt up to 50 g l?1. The fungus biosorbed 85.4 mg dye g?1of dried biomass at 100 mg l?1 initial dye concentration in the absence of salt. When 50 g l?1 salt was added to the biosorption medium, this value dropped to 60.8 mg g?1 resulting in 28.8% reduction in biosorption capacity. The Redlich–Peterson and Langmuir–Freundlich were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. The pseudo-second-order and saturation type kinetic models depicted the biosorption kinetics accurately for all cases studied. Equilibrium and kinetic constants varied with the level of salt were expressed as a function of salt concentration.  相似文献   

10.
Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km2) is estimated to be in excess of the N CL. Low CL values (3–8 kg N ha?1 yr?1) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3–15% of the forested and chaparral land areas are estimated to be in exceedance of the NO3? leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha?1 yr?1. In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha?1 yr?1, and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha?1 yr?1. Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.  相似文献   

11.
The low productivity of salmonids in many river systems across the UK is testament to their intolerance of water quality perturbations including those associated with excessive sedimentation. Catchment and fishery managers concerned with combating such issues require reliable information on the key sources of the sediment problem to target management and on the efficacy of the mitigation options being implemented. In recognition of the latter requirement, a pre- and post-remediation sediment sourcing survey was used to examine the potential for using sediment tracing to assemble preliminary information on the efficacy of riparian fencing schemes for reducing sediment contributions from eroding channel banks to salmonid spawning gravels in the Rivers Camel, Fal, Lynher, Plym, Tamar and Tavy in the south west of the UK. Respective estimates of the overall mean proportion (±95% confidence limits) of the interstitial sediment input to salmonid spawning gravels originating from eroding channel banks during the pre- (1999–2000) and post-remediation (2008–2009) study periods were computed at 97 ± 1% vs. 69 ± 1%, 94 ± 1% vs. 91 ± 1%, 12 ± 1% vs. 10 ± 1%, 92 ± 1% vs. 34 ± 1%, 31 ± 1% vs. 16 ± 1% and 90 ± 1% vs. 66 ± 1%. Whilst the study demonstrates the potential utility of the fingerprinting approach for helping to assemble important information on the efficacy of bank fencing as a sediment source control measure at catchment scale, a number of limitations of the work and some suggestions for improving experimental design are discussed. Equivalent data are urgently required for many sediment mitigation options to help inform the development of water quality policy packages designed to protect aquatic ecosystems.  相似文献   

12.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

13.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   

14.
A new contact oxidation filtration separation integrated bioreactor (CFBR) was used to treat municipal wastewater. The CFBR was made up of a biofilm reactor (the upper part of the CFBR) and a gravitational filtration bed (the lower part of the CFBR). Polyacrylonitrile balls (50 mm diameter, 237 m2/m3 specific surface, 90% porosity, and 50.2% packing rate) were filled into the biofilm reactor as biofilm attaching materials and anthracite coal (particle size 1–2 mm, packing density 0.947 g/cm3, non-uniform coefficient (K80 = d80/d10) < 2.0) was placed into the gravitational filtration bed as filter media. At an organic volumetric loading rate of 2.4 kg COD/(m3 d) and an initial filtration velocity of 5 m/h in the CFBR, the average removal efficiencies of COD, ammonia nitrogen, total nitrogen and turbidity were 90.6%, 81.4%, 64.6% and 96.7% respectively, but the treatment process seemed not to be effective in phosphorus removal. The average removal efficiency of total phosphorus was 60.1%. Additionally, the power consumption of the CFBR was less than 0.15 kWh/m3 of wastewater treated, and less than 1.5 kWh/kg BOD5 removal.  相似文献   

15.
This work presents results from a rate-based model of strippers at normal pressure (160 kPa) and vacuum (30 kPa) in Aspen Custom Modeler® (ACM) for the desorption of CO2 from 5 m K+/2.5 m piperazine (PZ). The model solves the material, equilibrium, summation and enthalpy (MESH) equations, the heat and mass transfer rate equations, and computes the reboiler duty and equivalent work for the stripping process. Simulations were performed with IMTP #40 random packing and a temperature approach on the hot side of the cross-exchanger of 5 °C and 10 °C. A “short and fat” stripper requires 7–15% less total equivalent work than a “tall and skinny” one because of the reduced pressure drop. The vacuum and normal pressure strippers require 230 s and 115 s of liquid retention time to get an equivalent work 4% greater than the minimum work. Stripping at 30 kPa was controlled by mass transfer with reaction in the boundary layer and diffusion of reactants and products (88% resistance at the rich end and 71% resistance at the lean end). Stripping at 160 kPa was controlled by mass transfer with equilibrium reactions (84% resistance at the rich end and 74% resistance at the lean end) at 80% flood. The typical predicted energy requirement for stripping and compression to 10 MPa to achieve 90% CO2 removal was 37 kJ/gmol CO2. This is about 25% of the net output of a 500 MW power plant with 90% CO2 removal.  相似文献   

16.
Based on the method of material flow analysis (MFA), a static model of Austrian aluminum (Al) flows in 2010 was developed. Extensive data research on Al production, consumption, trade and waste management was conducted and resulted in a detailed model of national Al resources. Data uncertainty was considered in the model based on the application of a rigorous concept for data quality assessment. The model results indicated that the growth of the Austrian “in-use” Al stock amounts to 11 ± 3.1 kg yr−1 cap−1. The total “in-use” Al stock was determined using a bottom-up approach, which produced an estimate of 260 kg Al cap−1. Approximately 7 ± 1 kg of Al yr−1 cap−1 of old scrap was generated in 2010, of which 20% was not recovered because of losses in waste management processes. Quantitatively, approximately 40% of the total scrap input to secondary Al production originated from net imports, highlighting the import dependency of Austrian Al refiners and remelters. Uncertainties in the calculation of recycling indicators for the Austrian Al system with high shares of foreign scrap trade were exemplarily illustrated for the old scrap ratio (OSR) in secondary Al production, resulting in a possible range of OSRs between 0 and 66%. Overall, the detailed MFA in this study provides a basis to identify resource potentials as well as resource losses in the national Al system, and it will serve as a starting point for a dynamic Al model to be developed in the future.  相似文献   

17.
The objective of this work was to analyze the effect of the interaction between feeding strategy and COD/sulfate ratio on the removal efficiency of sulfate and organic matter from a synthetic wastewater. An anaerobic sequencing batch reactor with recirculation of the liquid phase and containing immobilized biomass on polyurethane foam (AnSBBR) was used. The AnSBBR with a total volume of 3.7 L, treated 2.0 L synthetic wastewater in 8-h cycles at 30 ± 1 °C and was inoculated with anaerobic biomass from a UASB. Two feeding strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. The COD/sulfate ratios assessed were 1 and 3. Based on these values and on the concentrations of organic matter (0.5–11.25 gCOD/L) and sulfate (0.5 and 2.5 gSO42?/L), the sulfate and organic matter loading rates applied equaled 1.5 and 4.5 gSO42?/L d for sulfate and 1.5, 4.5 and 13.5 gCOD/L d for organic matter. After stabilization of the system time profiles were run of monitored parameters (COD, sulfate, sulfide and sulfite). In general, the reactor showed to be robust for use in the anaerobic treatment of wastewaters containing sulfate. Gradual feeding (strategy b) of the carbon source favored sulfate reduction, resulting in sulfate removal efficiencies of 84–98% and organic matter removal efficiencies of 48–95%. The best results were observed under COD/sulfate ratio equal to 1 (loading rates of 1.5 and 4.5 gSO42?/L d for sulfate, and 1.5 and 4.5 gCOD/L d for organic matter). When COD/sulfate ratio was 3 (loading rates of 1.5 and 4.5 gSO42?/L d for sulfate, and 4.5 and 13.5 gCOD/L d for organic matter) the effect of feed mode became less significant. These results show that the strategy batch followed by fed-batch is more advantageous for COD/sulfate ratios near the stoichiometric value (0.67) and higher organic matter and sulfate concentrations.  相似文献   

18.
Landfill leachate contains high concentrations of organic matter, color, heavy metals and toxic substances. This study presents the feasibility of a commercial nanofiltration membrane (NF-300) in the removal of pollutants from a landfill leachate generated from the Treatment Stabilization and Disposal Facility in Gujarat state of India. Two different leachate samples (Leachates A and B) were collected from the downstream side of closed landfill cells A and B. The average quality of the leachate was 67 719 mg/L COD, 217 mg/L ammonical nitrogen, 22 418 mg/L BOD, 3847 mg/L chlorides and 909 mg/L sulphate. The operating variables studied were applied pressure (4–20 atm), feed flowrate (5–15 L/min) and pH (2, 4, 5.5 and 6.7). It was observed that the solute rejection (RO) increased with increase in feed pressure and decreased with increase in feed concentration at constant feed flowrate. In the present study, the rejection of cations followed the sequence: RO (Cr3+) > RO (Ni2+) > RO (Zn2+) > RO (Cu2+) > RO (Cd2+) for leachates A and B. The order of solute rejection sequence is inversely proportional to the diffusion coefficients. The rejection of sulphate ions by the NF-300 membrane was 83 and 85%, while the rejection of chlorides was 62 and 65% for leachates A and B, respectively. The NF-300 membrane was characterized by using the combined-film theory-Spiegler–Kedem (CFSK) model based on irreversible thermodynamics and the ion transport model based on the extended Nernst–Planck equation. The membrane transport parameters were estimated using the Levenberg–Marquadt method. The estimated parameters were used to predict the membrane performance and the predicted values are in good agreement with the experimental results.  相似文献   

19.
The quantification of impacts in the abiotic resource category in life cycle assessment is still controversial. However, this is a pertinent issue because of the growing dependence of our industrial society on these resources, particularly on metal resources. One of the important shortcomings of the existing assessment methods used today is that characterization factors are not based on actual mining practice data. In this paper, a new characterization factor derived from recent (1998–2010) and representative (more than 50% coverage of global primary metal production) mining data was established for nine metals: copper, zinc, lead, nickel, molybdenum, gold, silver, platinum and palladium. The quantification of this new characterization factor is based on the annual increase in mass of ore required per unit mass of metal in the ore. This quantification relies on the concept that the mining of resources is threatened not by lack of ores but by changing ore characteristics, e.g., the percentage of metal in the ore, mineral type and location. The characterization factors determined in this study ranged from below 0.1 kg ore kg−1 y−1 for zinc to more than 15,000 kg ore kg−1 y−1 for gold. These results indicate that in 1999, 370,000 kg of ore was required per kg of gold in the ore, whereas in 2008, 530,000 kg of ore was required per kg of gold in the ore (an increase of approximately 4% per annum). When comparing these results with traditional life cycle impact assessment methods, it was found that in all but one method gold, palladium and platinum have the highest characterization factors among the nine metals. In all methods based on ore grade changes lead and zinc are the metals with the lowest characterization factors. However, an important difference in the proposed method is that it assigns higher relative values to precious metals. This suggests that the supply of precious metals may be under more pressure than indicated by other methods, which in the framework of the proposed method implies greater efforts in mining and mineral processing. There is still scope for improvement of the proposed method if more data become readily available.  相似文献   

20.
In 2002, about 17.1 million bales of cotton were ginned in the United States and the estimated cotton gin waste was 2.25 × 109 kg. The disposal of cotton gin waste (CGW) is a significant problem in the cotton ginning industry, but CGW could be potentially used as feedstock for bioethanol. Freshly discharged CGW and stored CGW were characterized for storage stability and potential for ethanol production by determining their summative compositions. The bulk densities of the fresh wet and dry CGW were 210.2 ± 59.9 kg m−3 and 183.3 ± 52.2 kg m−3, respectively. After six months of storage the volume of piles A, B, and C decreased by 38.7%, 41.5%, and 33.3%, respectively, relative to the volume of the pile at the start of the storage. The ash content of the CGW was very high ranging from 10% to 21% and the acid-insoluble fraction was high (21–24%). The total carbohydrate content was very low and ranged from 34% to 49%. After three months storage, chemical compositional analysis showed the loss of total carbohydrates was minimal but after six months, the losses were as high as 25%. This loss of carbohydrates suggests that under open storage conditions, the feedstock must be processed within three months to reduce ethanol yield losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号