首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper develops a comprehensive and objective picture of bird distributions relative to habitats across Britain. Bird species presence/absence data from an extensive field survey and habitat data from the remotely sensed UK Land Cover Map 2000 were analysed in 36,920 tetrads (2 kmx2 km) across Britain (a 65% sample of Britain's c. 240,000 km2). Cluster analysis linked birds to generalised landscapes based on distinctive habitat assemblages. Maps of the clusters showed strong regional patterns associated with the habitat assemblages. Cluster centroid coordinates for each bird species and each habitat were combined across clusters to derive individualised bird-habitat preference indices and examine the importance of individual habitats for each bird species. Even rare species and scarce habitats showed successful linkages. Results were assessed against published accounts of bird-habitat relations. Objective corroboration strongly supported the associations. Relatively scarce coastal and wetland habitats proved particularly important for many birds. However, extensive arable farmland and woodland habitats were also favoured by many species, despite reported declines in bird numbers in these habitats. The fact that habitat-specialists do not or cannot move habitat is perhaps a reason for declining numbers where habitats have become unsuitable. This study showed that there are unifying principles determining bird-habitat relations which apply and can be quantified at the national scale, and which corroborate and complement the cumulative knowledge of many and varied surveys and ecological studies. This 'generality' suggests that we may be able, reliably and objectively, to integrate and scale up such disparate studies to the national scale, using this generalised framework. It also suggests the potential for a landscape ecology approach to bird-habitat analyses. Such developments will be important steps in building models to develop and test the sustainable management of landscapes for birds.  相似文献   

2.
Habitat re-creation is one of the multiple faces of biodiversity restoration and encompasses the attempts to reconstruct an ecosystem on severely disturbed sites with little left to restore. Afforestation of abandoned or marginal agricultural land is an important tool for the re-creation of forest ecosystems and re-establishment of functional habitat networks for the maintenance of biodiversity. This study was performed in the context of the Danish-Lithuanian project ‘Afforestation of abandoned agricultural land based on sustainable land use planning and environmentally sound forest management’. The study assessed how habitat re-creation as designed in alternative afforestation plans for two administrative regions in Lithuania will affect the functionality of the landscapes for bird species of conservation concern. Spatial analysis of the forest cover was performed under existing and proposed conditions using general landscape ecological principles concerning core and edge habitats as well as nearest-neighbour metrics. The results show that the use of general criteria may result in proportionally negative changes in the availability of some forest habitats relative to changes in total forest cover, thus leading to less significant improvements in the habitats of many naturally occurring (and even protected) species compared to what would be expected from changes in forest cover alone. To solve this dilemma it is suggested that the requirements of focal species and quantitative conservation objectives should be considered in a spatially explicit – each main forest type. It is concluded that to ensure functionality of habitat networks, knowledge and experience from the fields of landscape ecology and conservation biology should be more commonly incorporated into afforestation planning.  相似文献   

3.
Multiple-species habitat conservation plans (MSHCPs) are designed to eliminate project-by-project review and minimize species-by-species conflicts; but these one-time, short-term processes invariably compress the divergent expectations of interest groups into an exercise driven by economic, amenity, and aesthetic values rather than scientific values. Participants may define an MSHCP as an exchange of habitat preserves for federal permits to take populations of endangered animals and plants, but the outcome is typically driven by overarching arguments over land development and suburban sprawl. Existing land uses also constrain the size, shape, and linkages among wildlife habitats, leading to a divergence of MSHCPs from the scientific preserve selection and design literature. Problems created by constraints to preserve configuration (e.g., land costs, fragmentation, pre-existing amounts of edge, lack of connectivity) must be resolved by long-term, post facto management. To date, estimates of preserve persistence have not been used in MSHCPs. Rather than focus on map-based exercises of preserve elements, it may be more productive to set goals for the persistence of species (states) and ecosystems (processes) within the preserves-accepting that preserve configurations and arrays will be defined by the landscape and politics of suburban areas and that long-term management will provide the primary means of maintaining biodiversity along the wildland/urban interface.  相似文献   

4.
Industrialized agriculture currently substitutes many of the ecological functions of soil micro-organisms, macroinvertebrates, wild plants, and vertebrate animals with high cost inputs of pesticides and fertilizers. Enhanced biological diversity potentially offers agricultural producers a means of reducing the cost of their production. Conservation of biodiversity in agricultural landscapes may be greatly enhanced by the adoption of certain crop management practices, such as reduced pesticide usage or measures to prevent soil erosion. Still, the vast monocultures comprising the crop area in many Canadian agricultural landscapes are often of limited conservation value, thus the inclusion of appropriate wildlife habitat in and around arable lands is a fundamental prerequisite for the integration of wild species within agricultural landscapes. This review of current literature considers the potential for non-crop areas within agricultural landscapes to be reservoirs of agronomically beneficial organisms including plants, invertebrates, and vertebrate species. Non-crop habitats adjacent to crop land have been identified as significant for the maintenance of plant species diversity, for the conservation of beneficial pollinating and predatory insects, and as essential habitat for birds. A key component for enhancement of biodiversity is the reintroduction of landscape heterogeneity by (1) protection and enhancement of key non-crop areas, (2) smaller fields and farms, and (3) a greater mixture of crops, through rotation, intercropping and regional diversification. The benefits of increased biodiversity within arable lands are reviewed for various species groups. In the Canadian context, any serious attempt to derive significant agronomic benefit from increased biodiversity will require considerable changes in the agricultural programs and policies which shape mainstream industrialized agriculture. The problems of crop depredation by vertebrate species, weed and insect competition, which still represent significant impediments to the creation and proper management of wildlife habitat, are also discussed.  相似文献   

5.
Design of landscape is the process of the arrangement of spatial features with the objective of sustaining ecosystem services, and maintaining ecological functionality to meet societal needs. Along a gradient of cultivation intensity, the functional quality of agricultural landscape was explored and the relationships between landscape metrics and functional quality were analyzed, in order to make effective recommendations for landscape design aimed at sustainable land use schemes. The functional quality of landscape was calculated using the InVest model for 20 farm landscapes (North-Eastern Italy) where biodiversity (plant taxa) and sensitivity to disturbance (hemeroby) were used as model inputs. Results highlighted the importance of specific habitat types such as meadows and woodlands rather than other habitats for improving the biodiversity of agricultural landscapes. A high proportion of these habitats enhanced the functional quality of the landscape when the habitats were organized in large and not isolated patches in heterogeneous landscapes.  相似文献   

6.
Fallow vegetation within landscapes dominated by shifting cultivation represents a woody species pool of critical importance with considerable potential for biodiversity conservation. Here, through the analysis of factors that influence the early stages of fallow vegetation regrowth in two contrasting forest margin landscapes in Southern Cameroon, we assessed the impact of current trends of land use intensification and expansion of the cultivated areas, upon the conservation potential of shifting cultivation landscapes. We combined the analysis of plot and landscape scale factors and identified a complex set of variables that influence fallow regrowth processes in particular the characteristics of the agricultural matrix and the distance from forest. Overall we observed a decline in the fallow species pool, with composition becoming increasingly dominated by species adapted to recurrent disturbance. It is clear that without intervention and if present intensification trends continue, the potential of fallow vegetation to contribute to biodiversity conservation declines because of a reduced capacity, (1) to recover forest vegetation with anything like its original species composition, (2) to connect less disturbed forest patches for forest dependent organisms. Strategies to combat biodiversity loss, including promotion of agroforestry practices and the increase of old secondary forest cover, will need not only to operate at a landscape scale but also to be spatially explicit, reflecting the spatial pattern of species reservoirs and dispersal strategies and human usage across landscapes.  相似文献   

7.
The clearance of indigenous riparian vegetation and removal of large woody debris (LWD) from streams combined with the planting of exotic plant species has resulted in widespread detrimental impacts on the fluvial geomorphology and aquatic ecology of Australian rivers. Vegetation exerts a significant influence on fluvial geomorphology by affecting resistance to flow, bank strength, sediment storage, bed stability and stream morphology and is important for aquatic ecosystem function. As the values of indigenous riparian vegetation are becoming better recognised by Australian river managers, large amounts of money and resources are being invested in the planting of indigenous riparian vegetation as part of river rehabilitation programs. This paper summarises the results of an investigation into the survival, growth and regeneration rates of a series of trial native riparian vegetation plantings on in-channel benches in the Hunter Valley of southeastern Australia. The trials were poorly designed for statistical analysis and the paper highlights a number of shortcomings in the methods used. As a result, a new approach to riparian vegetation rehabilitation is outlined that promotes the use of scientific principles and understanding. Appropriate species should be selected using a combination of remnant vegetation surveys, historical records, palynology and field trials. A number of important factors should be considered in the rehabilitation of riparian vegetation to achieve worthwhile results. These include flood disturbance, vegetation zonation, vegetation succession, substrate composition, corridor planting width, planting techniques, native plant regeneration, LWD recruitment and adaptive ecosystem management. This approach, if adopted, revised and improved by river managers, should result in greater success than has been achieved by previous riparian vegetation rehabilitation efforts in Australia.  相似文献   

8.
Characteristics of urban natural areas and surrounding landscapes were identified that best explain winter bird use for 28 urban natural areas in southern Ontario, Canada. The research confirms for winter birds the importance of area (size) and natural vegetation, rather than managed, horticultural parkland, within urban natural areas as well as percent urban land use and natural habitat in surrounding landscapes. Alien bird density and percent ground feeding species increased with percent surrounding urban land use. Higher percent forest cover was associated with higher percentages of forest, bark feeding, small (<20 g) and insectivorous species. Natural area size (ha) was related to higher species richness, lower evenness and higher percentages of insectivorous, forest interior, area-sensitive, upper canopy, bark feeding, and non-resident species. Higher number of habitat types within natural areas and percent natural habitat in surrounding landscapes were also associated with higher species richness. Common, resident bird species dominated small areas (<6.5 ha), while less common non-residents increased with area, indicative of a nested distribution. Areas at least 6.5 ha and more generally >20 ha start to support some area-sensitive species. Areas similar to rural forests had >25% insectivores, >25% forest interior species, >25% small species, and <5% alien species. Indicator species separated urban natural areas from rural habitats and ordination placed urban natural areas along a gradient between urban development and undisturbed, rural forests. More attention is needed on issues of winter bird conservation in urban landscapes.  相似文献   

9.
Limiting the spread of invasive plants has become a high priority among natural resource managers. Yet in some regions, invasive plants are providing important habitat components to native animals that are at risk of local or regional extirpation. In these situations, removing invasive plants may decrease short-term survival of the at-risk taxa. At the same time, there may be a reluctance to expand invaded habitats to benefit at-risk species because such actions may increase the distribution of invasive plants. Such a dilemma can result in “management paralysis,” where no action is taken either to reduce invasive plants or to expand habitats for at-risk species. A pragmatic solution to this dilemma may be to develop an approach that considers site-specific circumstances. We constructed a “discussion tree” as a means of initiating conversations among various stakeholders involved with managing habitats in the northeastern USA to benefit several at-risk taxa, including New England cottontails (Sylvilagus transitionalis). Major components of this approach include recognition that expanding some invaded habitats may be essential to prevent extirpation of at-risk species, and the effective control of invasive plants is dependent on knowledge of the status of invasives on managed lands and within the surrounding landscape. By acknowledging that management of invasive plants is a complex issue without a single solution, we may be successful in limiting their spread while still addressing critical habitat needs.  相似文献   

10.
This paper tests the use of a spatial analysis technique, based on the calculation of local spatial autocorrelation, as a possible approach for modelling and quantifying structure in northern Australian savanna landscapes. Unlike many landscapes in the world, northern Australian savanna landscapes appear on the surface to be intact. They have not experienced the same large-scale land clearance and intensive land management as other landscapes across Australia. Despite this, natural resource managers are beginning to notice that processes are breaking down and declines in species are becoming more evident. With future declines of species looking more imminent it is particularly important that models are available that can help to assess landscape health, and quantify any structural change that takes place. GIS and landscape ecology provide a useful way of describing landscapes both spatially and temporally and have proved to be particularly useful for understanding vegetation structure or pattern in landscapes across the world. There are many measures that examine spatial structure in the landscape and most of these are now available in a GIS environment (e.g. FRAGSTATS* ARC, r.le, and Patch Analyst). All these methods depend on a landscape described in terms of patches, corridors and matrix. However, since landscapes in northern Australia appear to be relatively intact they tend to exist as surfaces of continuous variation rather than in clearly defined homogeneous units. As a result they cannot be easily described using entity-based models requiring patches and other essentially cartographic approaches. This means that more appropriate methods need to be developed and explored. The approach examined in this paper enables clustering and local pattern in the data to be identified and forms a generic method for conceptualising the landscape structure where patches are not obvious and where boundaries between landscape features are difficult to determine. Two sites are examined using this approach. They have been exposed to different degrees of disturbance by fire and grazing. The results show that savanna landscapes are very complex and that even where there is a high degree of disturbance the landscape is still relatively heterogeneous. This means that treating savanna landscapes as being made up of homogeneous units can limit analysis of pattern, as it can over simplify the structure present, and that methods such as the autocorrelation approach are useful tools for quantifying the variable nature of these landscapes.  相似文献   

11.
On-farm water storages (locally known as farm dams or farm ponds) are an important part of many agricultural landscapes, as they provide a reliable source of water for irrigation and stock. Although these waterbodies are artificially constructed and morphologically simple, there is increasing interest in their potential role as habitat for native flora and fauna. In this article, we present results from a case study which examined the habitat characteristics (such as water physical and chemical parameters, benthic metabolism, and macrophyte cover) and the macrophyte and macroinvertebrate biodiversity of eight farm ponds on four properties in the Stanley Catchment, Southeast Queensland, Australia. Each landowner was interviewed to allow a comparison of the management of the ponds with measured habitat and biodiversity characteristics, and to understand landowners’ motivations in making farm pond management decisions. The physical and chemical water characteristics of the study ponds were comparable to the limited number of Australian farm ponds described in published literature. Littoral zones supported forty-five macroinvertebrate families, with most belonging to the orders Hemiptera, Coleoptera, Odonata, and Diptera. Invertebrate community composition was strongly influenced by littoral zone macrophyte structure, with significant differences between ponds with high macrophyte cover compared to those with bare littoral zones. The importance of littoral zone macrophytes was also suggested by a significant positive relationship between invertebrate taxonomic richness and macrophyte cover. The landowners in this study demonstrated sound ecological knowledge of their farm ponds, but many had not previously acknowledged them as having high habitat value for native flora and fauna. If managed for aquatic organisms as well as reliable water sources, these artificial habitats may help to maintain regional biodiversity, particularly given the large number of farm ponds across the landscape.  相似文献   

12.
This article deals with the visual quality of Mediterranean vegetation groups in northern Israel, the public's preference of these groups as a visual resource, and the policy options for their management. The study is based on a sample of 44 Mediterranean vegetation groups and three population groups of local residents, who were interviewed using a questionnaire and photographs of the vegetation groups. The results of the research showed that plant classification methods based on flora composition, habitat, and external appearance were found to be suitable for visual plant classification and for the evaluation of visual preference of vegetation groups by the interviewed public. The vegetation groups of planted pine forests and olive groves, characterizing a cultured vegetation landscape, were preferred over typical Mediterranean landscapes such as scrub and grassed scrub. The researchers noted a marked difference between the two products of vegetation management policy, one that proposes the conservation and restoration of the variety of native Mediterranean vegetation landscape, and a second that advanced the development of the cultured landscape of planted olive groves and pines forests, which were highly preferred by the public. The authors suggested the development of an integrated vegetation management policy that would combine both needs and thus reduce the gap between the policy proposed by planners and the local population's visual preference.  相似文献   

13.
This study assessed the relationship among land use, riparian vegetation, and avian populations at two spatial scales. Our objective was to compare the vegetated habitat in riparian corridors with breeding bird guilds in eight Rhode Island subwatersheds along a range of increasing residential land use. Riparian habitats were characterized with fine-scale techniques (used field transects to measure riparian vegetation structure and plant species richness) at the reach spatial scale, and with coarse-scale landscape techniques (a Geographic Information System to document land-cover attributes) at the subwatershed scale. Bird surveys were conducted in the riparian zone, and the observed bird species were separated into guilds based on tolerance to human disturbance, habitat preference, foraging type, and diet preference. Bird guilds were correlated with riparian vegetation metrics, percent impervious surface, and percent residential land use, revealing patterns of breeding bird distribution. The number of intolerant species predominated below 12% residential development and 3% impervious surface, whereas tolerant species predominated above these levels. Habitat guilds of edge, forest, and wetland bird species correlated with riparian vegetation. This study showed that the application of avian guilds at both stream reach and subwatershed scales offers a comprehensive assessment of effects from disturbed habitat, but that the subwatershed scale is a more efficient method of evaluation for environmental management.  相似文献   

14.
The importance of riparian vegetation to support stream function and provide riparian bird habitat in semiarid landscapes suggests that standardized assessment tools that include vegetation criteria to evaluate stream health could also be used to assess habitat conditions for riparian-dependent birds. We first evaluated the ability of two visual assessments of woody vegetation in the riparian zone (corridor width and height) to describe variation in the obligate riparian bird ensemble along 19 streams in eastern Oregon. Overall species richness and the abundances of three species all correlated significantly with both, but width was more important than height. We then examined the utility of the riparian zone criteria in three standardized and commonly used rapid visual riparian assessment protocols—the USDI BLM Proper Functioning Condition (PFC) assessment, the USDA NRCS Stream Visual Assessment Protocol (SVAP), and the U.S. EPA Habitat Assessment Field Data Sheet (HAFDS)—to assess potential riparian bird habitat. Based on the degree of correlation of bird species richness with assessment ratings, we found that PFC does not assess obligate riparian bird habitat condition, SVAP provides a coarse estimate, and HAFDS provides the best assessment. We recommend quantitative measures of woody vegetation for all assessments and that all protocols incorporate woody vegetation height. Given that rapid assessments may be the only source of information for thousands of kilometers of streams in the western United States, incorporating simple vegetation measurements is a critical step in evaluating the status of riparian bird habitat and provides a tool for tracking changes in vegetation condition resulting from management decisions.  相似文献   

15.
We analyzed the past and current distribution and abundance of vegetation and wildlife to develop a wildlife habitat restoration plan for the Sweetwater Regional Park, San Diego County, California. Overall, there has been a substantial loss of native amphibians and reptiles, including four amphibians, three lizards, and 11 snake species. The small-mammal community was depauperate and dominated by the exotic house mouse (Mus musculus) and the native western harvest mouse (Reithrodontomys megalotis). It appeared that either house mice are exerting a negative influence on most native species or that they are responding positively to habitat degradation. There has apparently been a net loss of 13 mammal species, including nine insectivores and rodents, a rabbit, and three large mammals. Willow (Salix) cover and density and cottonwoods (Populus fremontii) had the highest number of positive correlations with bird abundance. There has been an overall net loss of 12 breeding bird species; this includes an absolute loss of 18 species and a gain of six species. A restoration plan is described that provides for creation and maintenance of willow riparian, riparian woodland, and coastal sage scrub vegetation types; guides for separation of human activities and wildlife habitats; and management of feral and exotic species of plants and animals.  相似文献   

16.
Lake Toolibin, an ephemeral lake in the agricultural zone of Western Australia, is under threat from secondary salinity due to land clearance throughout the catchment. The lake is extensively covered with native vegetation and is a Ramsar listed wetland, being one of the few remaining significant migratory bird habitats in the region. Currently, inflow with salinity greater than 1000 mg/L TDS is diverted from the lake in an effort to protect sensitive lakebed vegetation. However, this conservative threshold compromises the frequency and extent of lake inundation, which is essential for bird breeding. It is speculated that relaxing the threshold to 5000 mg/L may pose negligible additional risk to the condition of lakebed vegetation. To characterise the magnitude of improvement in the provision of bird breeding habitat that might be generated by relaxing the threshold, a dynamic water and salt balance model of the lake was developed and implemented using Monte Carlo simulation. Results from best estimate model inputs indicate that relaxation of the threshold increases the likelihood of satisfying habitat requirements by a factor of 9.7. A second-order Monte Carlo analysis incorporating incertitude generated plausible bounds of [2.6, 37.5] around the best estimate for the relative likelihood of satisfying habitat requirements. Parameter-specific sensitivity analyses suggest the availability of habitat is most sensitive to pan evaporation, lower than expected inflow volume, and higher than expected inflow salt concentration. The characterisation of uncertainty associated with environmental variation and incertitude allows managers to make informed risk-weighted decisions.  相似文献   

17.
The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.  相似文献   

18.
A landscape may be envisioned as a space partitioned by a number of ecosystem types, and so it conforms to a neo-Clementsian model of succession. A corollary is that intermediate disturbance rates should maximize landscape (beta) diversity. This was confirmed using eight boreal forest landscapes in northwestern Ontario, Canada, where intermediate rates of forest fire were associated with highest landscape diversity. Because current measures of evenness subsume a richness measure, it is not, as yet, feasible to assess the relative contributions of evenness and richness to biological diversity, and thus it was not possible to determine the roles of numbers of habitat types and relative amounts of habitat types in the above situation. Both theory and observations suggest that forest fire control in fire-prone landscapes increases landscape diversity, but that it is lowered by fire control in landscapes of intermediate to low diversity.  相似文献   

19.
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.  相似文献   

20.
Grazing management necessarily emphasizes the most spatially extensive vegetation assemblages, but landscapes are mosaics, often with more mesic vegetation types embedded within a matrix of drier vegetation. Our primary objective was to contrast effects of equine grazing on both subalpine vegetation structure and associated arthropods in a drier reed grass (Calamagrostis muiriana) dominated habitat versus a wetter, more productive sedge habitat (Carex utriculata). A second objective was to compare reed grass and sedge as habitats for fauna, irrespective of grazing. All work was done in Sequoia National Park (CA, USA), where detailed, long-term records of stock management were available. We sampled paired grazed and control wet meadows that contained both habitats. There were moderate negative effects of grazing on vegetation, and effects were greater in sedge than in reed grass. Conversely, negative grazing effects on arthropods, albeit limited, were greater in the drier reed grass, possibly due to microhabitat differences. The differing effects on plants and animals as a function of habitat emphasize the importance of considering both flora and fauna, as well as multiple habitat types, when making management decisions. Sedge supported twice the overall arthropod abundance of reed grass as well as greater diversity; hemipteran and dipteran taxa were particularly abundant in sedge. Given the greater grazing effects on sedge vegetation, greater habitat provision for terrestrial arthropods, and value as aquatic arthropod habitat, the wetter sedge assemblage is worthy of additional consideration by managers when planning for grazing and other aspects of land usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号