首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS pollution management.  相似文献   

2.
ABSTRACT: Non-point source pollution cuntinues to be an important environmental and water quality management problem. For the moat part, analysis of non-point source pollution in watersheds has depended on the use of distributed models to identify potential problem areas and to assess the effectiveness of alternative management practices. To effectively use these models for watershed water quality management, users depend on integrated geographic information systems (GIS)-based interfaces for input/output data management. However, existing interfaces are ad-hoc and the utility of GIS is limited to organization of input data and display of output data. A highly interactive water quality modeling interface that utilizes the functional components and analytical capability of GIS is highly desirable. This paper describes the tight coupling of the Agricultural Non-point Source (AGNPS) water quality model and ARC/INFO GIS software to provide an interactive hybrid modeling environment for evaluation of non-point source pollution in a watershed. The modeling environment is designed to generate AGNPS input parameters from user-specified GIS coverages, create AGNPS input data files, control AGNPS model simulations, and extract and organize AGNPS model output data for display. An example application involving the estimation of pesticide loading in a southern Iowa agricultural watershed demonstrates the capability of the modeling environment. Compared with traditional methods of watershed water quality modeling using the AGNPS model or other ad-hoc interfaces between a distributed model and GIS, the interactive modeling environment system is efficient and significantly reduces the task of watershed analysis using tightly coupled GIS databases and distributed models.  相似文献   

3.
ABSTRACT: A fundamental problem in protecting surface drinking water supplies is the identification of sites highly susceptible to soil erosion and other forms of nonpoint source (NPS) pollution. The New York City Department of Environmental Protection is trying to identify erodible sites as part of a program aimed at avoiding costly filtration. New York City's 2,000 square mile watershed system is well suited for analysis with geographic information systems (GIS); an increasingly important tool to determine the spatial distribution of sensitive NPS pollution areas. This study used a GIS to compare three land cover sources for input into the Modified Universal Soil Loss Equation (MUSLE), a model estimating soil loss from rangeland and forests, for a tributary watershed within New York City's water supply system. Sources included both conventional data (aerial photography) and Landsat data (MSS and TM images). Although land cover classifications varied significantly across these sources, location-specific and aggregate watershed predictions of the MUSLE were very similar. We conclude that using Landsat TM imagery with a hybrid classification algorithm provides a rapid, objective means of developing large area land cover databases for use in the MUSLE, thus presenting an attractive alternative to photo interpretation.  相似文献   

4.
Non-point-source (NPS) pollution remains the primary source of stream impairment in the United States. Many problems such as eutrophication, sedimentation, and hypoxia are linked with NPS pollution which reduces the water quality for aquatic and terrestrial organisms. Increasingly, NPS pollution models have been used for landscape-scale pollution assessment and conservation strategy development. Our modeling approach functions at a scale between simple landscape-level assessments and complex, data-intensive modeling by providing a rapid, landscape-scale geographic information system (GIS) model with minimal data requirements and widespread applicability. Our model relies on curve numbers, literature-derived pollution concentrations, and land status to evaluate total phosphorus (TP), total nitrogen (TN), and suspended solids (SS) at the reach scale. Model testing in the Chesapeake Bay watershed indicated that predicted distributions of water quality classes were realistic at the reach scale, but precise estimates of pollution concentrations at the local scale can have errors. Application of our model in the tributary watersheds along Lake Ontario suggested that it is useful to managers in watershed planning by rapidly providing important information about NPS pollution conditions in areas where large data gaps exist, comparisons among stream reaches across numerous watersheds are required, or regional assessments are sought.  相似文献   

5.
Agricultural non-point source (NPS) pollution, primarily sediment and nutrients, is the leading source of water-quality impacts to surface waters in North America. The overall goal of this study was to develop geographic information system (GIS) protocols to facilitate the spatial and temporal modeling of changes in soils, hydrology, and land-cover change at the watershed scale. In the first part of this article, we describe the use of GIS to spatially integrate watershed scale data on soil erodibility, land use, and runoff for the assessment of potential source areas within an intensively agricultural watershed. The agricultural non-point source pollution (AGNPS) model was used in the Muddy Creek, Ontario, watershed to evaluate the effectiveness of management strategies in decreasing sediment and nutrient [phosphorus (P)] pollution. This analysis was accompanied by the measurement of water-quality parameters (dissolved oxygen, pH, hardness, alkalinity, and turbidity) as well as sediment and P loadings to the creek. Practices aimed at increasing year-round soil cover would be most effective in decreasing sediment and P losses in this watershed. In the second part of this article, we describe a method for characterizing land-cover change in a dynamic urban fringe watershed. The GIS method we developed for the Blackberry Creek, Illinois, watershed will allow us to better account for temporal changes in land use, specifically corn and soybean cover, on an annual basis and to improve on the modeling of watershed processes shown for the Muddy Creek watershed. Our model can be used at different levels of planning with minimal data preprocessing, easily accessible data, and adjustable output scales.  相似文献   

6.
ABSTRACT: The AGNPS (AGricultural NonPoint Source) model was evaluated for predicting runoff and sediment delivery from small watersheds of mild topography. Fifty sediment yield events were monitored from two watersheds and five nested subwater-sheds in East Central Illinois throughout the growing season of four years. Half of these events were used to calibrate parameters in the AGNPS model. Average calibrated parameters were used as input for the remaining events to obtain runoff and sediment yield data. These data were used to evaluate the suitability of the AGNPS model for predicting runoff and sediment yield from small, mild-sloped watersheds. An integrated AGNPS/GIS system was used to efficiently create the large number of data input changes necessary to this study. This system is one where the AGNPS model was integrated with the GRASS (Geographic Resources Analysis Support System) GIS (Geographical Information System) to develop a decision support tool to assist with management of runoff and erosion from agricultural watersheds. The integrated system assists with the development of input GIS layers to AGNPS, running the model, and interpretation of the results.  相似文献   

7.
Abstract: The constrained ordination method from quantitative ecology was utilized to assess the relationship between landscape patterns and nonpoint‐source (NPS) pollution for the purpose of identifying effective water‐quality improvement practices in Danjiangkou Reservoir (DJKR) basin, China. The soil and water assessment tool (SWAT) was applied to simulate NPS pollution and the Fragstats model was applied to calculate the landscape metrics. The study concluded that organic nutrients formed the main NPS pollutant in the DJKR basin and that most of the NPS pollution occurred along with soil loss. Based on partial redundancy analysis, the conclusion that landscape metrics were significantly correlated to NPS pollution indices was obtained. Specifically, the composition of LULC (land use/land cover) was the most effective factor to estimate NPS pollution. Dry cultivated land was identified as the main source of NPS pollution, and paddy fields were characterized with the most intensive soluble nutrients loss. In addition, the reason that fragmented and complex landscape patterns exacerbate NPS pollution was that natural landscape composed most of this area. Moreover, the fragmented natural landscape indicated intensive agricultural activities that were the crucial trigger for NPS pollution. Combined with the economic condition in China, Conversion of Cropland to Forests Program (CCFP) should be conducted selectively and gradually in the DJKR basin.  相似文献   

8.
ABSTRACT: ArcView Nonpoint Source Pollution Modeling (AVNPSM), an interface between ArcView GIS and AGNPS (Agricultural Nonpoint Source Pollution Model) is developed in support of agricultural watershed analysis and nonpoint source pollution management. The interface is PC‐based and operates in a Windows environment. It consists of seven modules: AGNPS utility, parameter generator, input file processor, model executor, output visualizer, statistical analyzer, and land use simulator. Basic input data to the interface include: soil, digital elevation model, land use/cover, water features, climate, and information on management practices. Application of the AVNPSM to a sample watershed indicates that it is user friendly, flexible, and robust, and it significantly improves the efficiency of the nonpoint source pollution modeling process.  相似文献   

9.
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs.  相似文献   

10.
ABSTRACT: Nonpoint source (NPS) models and expert opinions are often used to prescribe best management practices (BMPs) for controlling NPS pollution. An optimization algorithm (e.g., a genetic algorithm, or GA) linked with a NPS model (e.g., Annualized AGricultural Nonpoint Source pollution model, or AnnAGNPS), can be used to more objectively prescribe BMPs and to optimize NPS pollution control measures by maximizing pollutant reduction and net monetary return from a watershed. Pollutant loads from design storms and annual loads from a continuous simulation can both be used for optimizing BMP schemes. However, which strategy results in a better solution (in terms of providing water quality protection) for a watershed is not clear. The specific objective of the study was to determine the differences in watershed pollutant loads, in an experimental watershed in Pennsylvania, resulting from optimization analyses performed using pollutant loads from a series of five 2‐yr 24‐hr storm events, a series of five 5‐yr 24‐hr storm events, and cumulative pollutant loads from a continuous simulation of five years of weather data. For each of these three different event alternatives, 100 near optimal solutions (BMP schemes) were generated. Sediment (Sed), sediment nitrogen (SedN), dissolved N (SolN), sediment organic carbon (SedOC), and sediment phosphorus (SedP) loads from a different five‐year period (an evaluation period) suggest that the optimal BMP schemes resulting from the use of annual cumulative pollutant loads from a continuous simulation of five years of weather data provide smaller cumulative NPS pollutant loads at the watershed outlet.  相似文献   

11.
LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT1   总被引:4,自引:0,他引:4  
ABSTRACT: A conceptual, continuous time model called SWAT (Soil and Water Assessment Tool) was developed to assist water resource managers in assessing the impact of management on water supplies and nonpoint source pollution in watersheds and large river basins. The model is currently being utilized in several large area projects by EPA, NOAA, NRCS and others to estimate the off-site impacts of climate and management on water use, non-point source loadings, and pesticide contamination. Model development, operation, limitations, and assumptions are discussed and components of the model are described. In Part II, a GIS input/output interface is presented along with model validation on three basins within the Upper Trinity basin in Texas.  相似文献   

12.
ABSTRACT: Geographic Information Systems (GIS) have been successfully integrated with distributed parameter, single-event, water quality models such as AGNPS (AGricultural NonPoint Source) and ANSWERS (Areal Nonpoint Source Watershed Environmental Response Simulation). These linkages proved to be an effective way to collect, manipulate, visualize, and analyze the input and output date of water quality models. However, for continuous-time, basin large-scale water quality models, collecting and manipulating the input data are more time-consuming and cumbersome due to the method of disaggregation (subdivisions are based on topographic boundaries). SWAT (Soil and Water Assessment Tool), a basin-scale water quality model, was integrated with a GIS to extract input data for modeling a basin. This paper discusses the detailed development of the integration of the SWAT water quality model with GRASS (Geographic Resources Analysis Support System) GIS, along with an application and advantages. The integrated system was applied to simulated a 114 sq. km upper portion of the Seco Creek Basin by subdividing it into 37 subbasins. The average monthly predicted streamflw is in agreement with measured monthly streamflw values.  相似文献   

13.
ABSTRACT: Geographic Information Systems (GIS) are being used increasingly as a method of preparing, analyzing, and displaying data for watershed analysis and modeling. Although GIS technology is a powerful tool for integrating and analyzing watershed characteristics, the initial preparation of the necessary database is often a time consuming and costly endeavor. This demonstration project assesses the viability of creating a cost-effective spatial database for urban stormwater modeling from existing digital and hard-copy data sources. The GIS was used to provide input parameters to the Source Loading and Management Model (SLANM), an empirical urban stormwater quality model. Land use characteristics, drainage boundaries, and soils information were geocoded and referenced to a base data layer consisting of transportation features. GIS overlay and data manipulation capabilities were utilized to preprocess the input data for the model. Model output was analyzed through postprocessing by GIS, and results were compared to a similar recent modeling study of the same watershed. The project, undertaken for a small urban watershed located in Plymouth, Minnesota, successfully demonstrates that the use of GIS in stormwater management can allow even small communities to reap the benefits of stormwater quality modeling.  相似文献   

14.
Agricultural non–point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs—i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds—have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from $2 to $200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km2; and optimal expenditure ranged from $21,000 to $35,000/km2. The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km2. These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.  相似文献   

15.
ABSTRACT: The St. Johns River Water Management District (SJR-WMD) is using a Geographic Information System (GIS) screening model to estimate annual nonpoint source pollution loads to surface waters and determine nonpoint source pollution problem areas within the SJRWMD. The model is a significant improvement over current practice because it is contained entirely within the district's GIS software, resulting in greater flexibility and efficiency, and useful visualization capabilities. Model inputs consist of five spatial data layers, runoff coefficients, mean runoff concentrations, and stormwater treatment efficiencies. The spatial data layers are: existing land use, future land use, soils, rainfall, and hydrologic boundaries. These data layers are processed using the analytical capabilities of a cell-based GIS. Model output consists of seven spatial data layers: runoff, total nitrogen, total phosphorous, suspended solids, biochemical oxygen demand, lead, and zinc. Model output can be examined visually or summarized numerically by drainage basin. Results are reported for only one of the SJRWMD's ten major drainage basins, the lower St. Johns River basin. The model was created to serve a major planning effort at the SJRWMD; results are being actively used to address nonpoint source pollution problems.  相似文献   

16.
天津市农村非点源污染控制对策   总被引:1,自引:0,他引:1  
本文介绍了2004年天津市农村非点源污染状况,对其主要污染来源和环境影响进行了分析。在此基础上,提出非点源污染控制目标和对策措施,并以天津市的重要饮用水源地——于桥水库为例,介绍了水库周边村落的畜禽养殖污染控制措施。  相似文献   

17.
ABSTRACT: Nonpoint sources (NPS) are an important and continuing source of toxic and conventional pollutants to surface waters. The Clean Water Act amendments of 1987 call for the regulation of these sources through the use of Best Management Practices (BMP). However, BMP implementation has generally occurred on a voluntary basis. This paper proposes a regulatory mechanism to control nonpoint source pollution. The regulatory mechanism involves the development of consortia, made up of all parties potentially responsible for NPS pollution, the development of wasteload allocations that coordinate the pollutant contributions from both point and nonpoint sources in a stream segment, and the issuance of permits to consortia to regulate the impacts of NPS pollution and ensure achievement of state or federal Water Quality Criteria and Standards.  相似文献   

18.
Forecasting land use change and its environmental impact at a watershed scale   总被引:18,自引:0,他引:18  
Urban expansion is a major driving force altering local and regional hydrology and increasing non-point source (NPS) pollution. To explore these environmental consequences of urbanization, land use change was forecast, and long-term runoff and NPS pollution were assessed in the Muskegon River watershed, located on the eastern coast of Lake Michigan. A land use change model, LTM, and a web-based environmental impact model, L-THIA, were used in this study. The outcomes indicated the watershed would likely be subjected to impacts from urbanization on runoff and some types of NPS pollution. Urbanization will slightly or considerably increase runoff volume, depending on the development rate, slightly increase nutrient losses in runoff, but significantly increase losses of oil and grease and certain heavy metals in runoff. The spatial variation of urbanization and its impact were also evaluated at the subwatershed scale and showed subwatersheds along the coast of the lake and close to cities would have runoff and nitrogen impact. The results of this study have significant implications for urban planning and decision making in an effort to protect and remediate water and habitat quality of Muskegon Lake, which is one of Lake Michigan's Areas of Concern (AOC), and the techniques described here can be used in other areas.  相似文献   

19.
This study presents the implementation of a spatial decision support system (SDSS) named ARENA. The program has been developed based on object‐oriented concepts using the Java programming language. The SDSS is made up of a groundwater simulation tool coupled to an open geographic information system (open GIS). Both the open GIS and groundwater simulation package share common spatial and nonspatial entities during the modeling process. A dedicated interface provides direct access to the GIS data without the need of external files. The finite element method is used to solve the partial differential equation that governs groundwater flow. The system implementation is presented by depicting the main classes and coupling procedures. A study case demonstrates the applicability of the simulation tool.  相似文献   

20.
ABSTRACT: The U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model, commonly called MODFLOW, has been modified so that it can read and write files used by a geographic information system (GIS). The modified model program is called MODFLOWARC. The design of MODFLOWARC parallels the design of the ground-water flow model program MODFLOW. The names of the variables, modules, and submodules used to explain the operations of MODFLOWARC were derived from the names used in MODFLOW. During the data input phase, MODFLOWARC reads array control records similar to the original control records of MODFLOW, except an additional variable is added. This additional variable is the name of the computer files containing array data in GIS format. Data output is achieved by setting record/input flags and by supplying a variable that is the name of the directory where the output data will be recorded. The modifications to MODFLOW were minimized so that MODFLOWARC will operate on an existing ground-water flow model without modifying array control records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号