首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用固体平板和液体摇瓶培养方法,研究了赤霉素、2,4-D、吲哚乙酸和萘乙酸4种激素对平菇-126菌丝生长及酶活性的影响。结果表明,吲哚乙酸虽然能提高发酵液胞外蛋白的含量和过氧化物酶活性,但对菌丝的生长起抑制作用,这与吲哚乙酸能引起平菇菌丝裂解和细胞膜渗漏有关;萘乙酸、低浓度2,4-D能促进菌丝的伸长;萘乙酸、赤霉素在低浓度下也能促进菌丝的分枝,对菌丝的生长整体上起促进作用。除吲哚乙酸外,其他3种激素对平菇菌丝生长影响都有两重性:低浓度下能促进菌丝的生长,浓度过高则会对菌丝生长产生毒害作用。  相似文献   

2.
千层塔扦插繁殖研究   总被引:11,自引:0,他引:11  
通过扦插试验,采用不同浓度水平的吲哚丁酸、萘乙酸、生根粉和吲哚丁酸+萘乙酸等药剂处理千层塔插条,研究对插条的生根量、生根率、成活率等的影响和插条萌芽状况及扦插基质对插条生根的影响,为千层塔资源快速再生提供有效的繁殖途径。  相似文献   

3.
通过对葛藤茎叶栽培平菇试验的观察和研究表明,葛藤茎叶中丰富的果胶质经高温处理产生的降解产物——单糖及衍生物能刺激菌丝的生长;经石灰水浸渍和未浸渍的试验组,菌丝满袋分别为26d和33d;生物学效率分别为188%-176%,比稻草对照组生物学效率提高44%-56%。葛藤茎叶是一种非常适合栽培平菇的好原料。  相似文献   

4.
植物生长调节剂对格药柃硬枝扦插繁殖的影响   总被引:1,自引:1,他引:0  
研究了NAA、IBA对格药柃硬枝扦插繁殖的影响.结果表明,选择适当浓度的外源植物生长调节物质可显著提高格药柃硬枝扦插繁殖效果.其中用1000mg/L质量浓度的吲哚丁酸溶液速浸5min插穗,其生根率可达76.67%.  相似文献   

5.
几种激素对光合细菌生长的影响   总被引:3,自引:0,他引:3  
李乐  李兰生  刘影  孙涛 《四川环境》2006,25(2):6-8,13
提出在培养基中添加一定浓度的动物或植物生长激素可促进光合细茵的生长。泼尼松、地塞米松、三十烷醇、α-萘乙酸的最适添加浓度分别为0.5mg/L,1mg/L,0.5mg/L和0.5mg/L。混和激素促生效果好于单一激素。指出在生产性培养中,添加某些激素促进光合细茵的生长是可行的。  相似文献   

6.
微量元素对双孢蘑菇菌丝生长的影响   总被引:3,自引:0,他引:3  
聋用固体平板和液体摇瓶培养试验方法,研究了Zn2+、Cu2+、Co2+、Mo(VI)、Mn2+等5种微量元素对双孢蘑菇2796菌丝生长的影响。通过测定各处理组的菌丝干重、胞内多糖、过氧化物酶活和菌丝生长势等生长参数表明,双孢蘑菇在添加上述5种浓度为20—40mg/L的微量元素时,对菌丝生长势、胞内多糖量和胞外蛋白量等都有促进作用,加入的浓度不同其促进程度也不同。加入Mn2+促进菌丝生长的效果最明显,使菌丝干重达最高值(200mg/100ml),胞内多糖量高达23mg/100ml,分别比对照组增加200%和400%,但添加高浓度的微量元素则会抑制菌丝的生长。  相似文献   

7.
研究不同种类和浓度的外源激素对白花龙生根能力的影响.结果表明,选择适当种类的外源激素和适宜浓度的外源激素可显著提高白花龙的扦插繁殖效果.其中,用250mg/L萘乙酸溶液浸泡插穗5min,其生根率最高,可达61.67%.  相似文献   

8.
1.草菇:孢子萌发的适宜温度为40℃,菌丝在15—45℃范围内均能生长,其最适温度为32℃,幼龄期生长的适温为35℃;气温低于15℃或高于45℃时,均不利于草菇生长。草菇的培养料可分别采用棉籽壳、废花、稻草、麦草等,适当加入麦麸、牛粪辅料配成。一般每50kg料可产鲜菇5—7.5kg,最高可产20kg左右。 2.pH-1(平菇高温种):该品种菌丝能在10—30℃内生长,最适温度为25—30℃;子实体形成的适温为25—28℃,喜偏碱性,培养料pH为7—8较适宜。  相似文献   

9.
采用生长速率法和孢子萌发法研究多主枝孢毒素粗提物TIC和TOC对小麦赤霉病菌、番茄早疫病菌菌丝生长和孢子萌发的抑制作用.结果表明,TIC和TOC对两种供试病菌菌丝生长和孢子萌发都有一定的抑制作用,且对菌丝生长抑制作用的强度与毒素浓度呈正相关.TOC对番茄早疫病菌菌丝生长的抑制作用强于对小麦赤霉病菌的抑制作用,而TIC在较高浓度下对番茄早疫病菌菌丝生长的抑制作用较强.TIC和TOC对番茄早疫病菌孢子萌发的抑制作用均强于小麦赤霉病菌.  相似文献   

10.
以钝顶螺旋藻(Spirulina Platenis)A9、A9L(藻体长直型)2种藻株为实验材料,研究了不同浓度苯酚(Phenol)对2种藻株生长的影响。结果显示:①低浓度苯酚能促进实验藻株生长;②不同藻株对苯酚浓度敏感性和忍受力有差异;③钝顶螺旋藻A9、A9L藻株可用于含低浓度苯酚的有机污水处理。  相似文献   

11.
Adsorption of 2,4-dichlorophenoxyacetic acid by an Andosol   总被引:1,自引:0,他引:1  
To identify the important soil components involved in 2,4-dichlorophenoxyacetic acid (2,4-D) adsorption on Andosols, 2,4-D adsorption on a surface horizon of an Andosol was compared with that on hydrogen peroxide (H2O2)-treated (soil organic matter [SOM] was removed), acid-oxalate (OX)-treated (active metal hydroxides and SOM were removed), and dithionite-citrate-bicarbonate (DCB)-treated (free and active metal [hydr]oxides and SOM were removed) soil samples at equilibrium pHs ranging from 4 to 8. Although the untreated soil contained a large amount of organic C (71.9 g kg-1), removal of SOM had little effect on 2,4-D adsorption. Active surface hydroxyls, which were attached to the active and free metal (hydr)oxides and metal SOM complexes, were identified as the most important soil functional group for 2,4-D adsorption. The dominant mechanism of the 2,4-D adsorption was a ligand exchange reaction in which the carboxylic group of 2,4-D displaced the active surface hydroxyl associated with metals and formed a strong coordination bond between the 2,4-D molecule and soil solid phase. The ligand exchange reaction reasonably accounted for the selective adsorption of 2,4-D over Cl-, competitive adsorption of phosphate over 2,4-D, reduction in plant-growth-inhibitory activity of soil-adsorbed 2,4-D, and the high 2,4-D adsorption ability of Andosols. Although a humic acid purified from the soil did not adsorb 2,4-D, the presence of the humic acid increased 2,4-D adsorption on Al and Fe, probably by inhibiting the hydrolysis and polymerization of Al and Fe resulting in the preservation of available adsorption sites on these metals. The adsorption behavior of 2,4-D on soils could be a good index for predicting the adsorption behavior of other organic acids in soils.  相似文献   

12.
A model of acidic pesticide sorption in soils was developed from theoretical modeling and experimental data, which initially considered a combination of a strongly acidic pesticide and a variable-charge soil with high clay content. Contribution of 2,4-D [(2,4-dichlorophenoxy) acetic acid] anionic-form sorption was small when compared with molecular sorption. Dissociation of 2,4-D was not sufficient to explain the variation in Kd as a function of pH. Accessibility of soil organic functional groups able to interact with the pesticide (conformational changes) as a function of organic matter dissociation was proposed to explain the observed differences in sorption. Experimental 2,4-D sorption data and K(oc) values from literature for flumetsulam [N-(2,6-difluorophenyl)-5-methyl [1,2,4] triazolo [1,5-a] pyrimidine-2-sulfonamide] and sulfentrazone [N-[2,4-dichloro-5-[4-(difluromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl] phenyl] methanesulfonamide] in several soils fit the model.  相似文献   

13.
Sorption and degradation of the herbicide 2,4-D [2,4-dichlorophenoxyacetic acid] were determined for 123 surface soils (0 to 15 cm) collected in 2002 and in 2004 between 49 degrees to 60 degrees north longitude and 110 degrees to 120 degrees west latitude in Alberta, Canada. The soils were characterized by soil organic carbon content (SOC), pH, electrical conductivity, soil texture, cation exchange capacity, carbonate content, and total soil microbial activity. The 2,4-D sorption coefficients, Kd and Koc, were highly variable with coefficients of variation of 89 and 59%, respectively, at the provincial scale. Both Kd and Koc were well described by regression models with SOC and soil pH as variables, regardless of scale. Surprisingly, variations in 2,4-D mineralization were much smaller than variations in sorption. Variability in total 2,4-D mineralization was particularly low, with a coefficient of variation of only 7% at the provincial scale. Average 2,4-D half-lives in ecoregions ranged from 1.7 to 3.5 d, much lower than the field dissipation half-life of 10 d reported for 2,4-D in general pesticide property databases. Regression models describing degradation parameters were generally poor or not significant because 2,4-D mineralization was only weakly associated with measured 2,4-D sorption parameters and soil properties. As such, regional variations in herbicide sorption coefficients should be measured or calculated based on soil properties, to assign distinct pesticide fate model input parameters when estimating 2,4-D off-site transport at the provincial scale. Spatial variations in herbicide degradation appear less important for Alberta as 2,4-D half-lives were similar in soils across the province. The rapid mineralization of 2,4-D is noteworthy because 2,4-D is widely used in Alberta and perhaps adaptation of soil microbial communities allowed for accelerated degradation regardless of soil properties or the extent of 2,4-D sorption by soil.  相似文献   

14.
ABSTRACT: Four 10-ha plots in dense watermilfoil beds of Lake Seminole, Georgia, were each treated with either 2,4-D DMA or 2,4-D BEE at rates of 22.5 and 45 kg a.e./ha. Both formulations were shown to be rapidly converted to the 2,4-D acid form, with no detection of 2,4-D DMA or 2,4-D BEE in the water within less than 24 hours after treatment. The maximum detected 2,4-D concentrations in the high rate 2,4-D DMA and 2,4-D BEE plots were 3.6 and 0.68 mg/, respectively. However, all but seven samples at a 2,4-D BEE plot showed nondetectable herbicide levels by day 7, with all water samples showing nondetectable levels by day 13. Dimethylnitrosamine and 2,4-dichlorophenol, potentially toxic transformation products of the herbicide formulations, were at nondetectable levels in all water samples. Sediment samples showed no significant net accumulation of 2,4-D, 2,4-D BEE, or 2,4-dichlorophenol during the summer monitoring; dimethylnitrosamine remained at nondetectable levels. There was no accumulation of 2,4-D in fish collected from the two plots treated with 2,4-D DMA. Four of 24 game fish from the 2,4-D BEE treatment plots contained low levels of 2,4-D in muscle tissue, with a maximum value of 0.29 μg/g. In contrast, 18 of 20 gizzard shad collected from these plots through day 13 contained detectable 2,4-D in the muscle, with a maximum concentration of 6.9 μg/g. All fish collected after day 13 contained nondetectable levels of 2,4-D. Small decreases in dissolved oxygen and pH, associated with the complete watermilfoil control in all plots, had returned to normal summer values by day 28.  相似文献   

15.
The degradation rate of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in silica-slurry systems to evaluate the bioavailability of sorbed-phase contaminant. After the silica particles were saturated with 2,4-D, the system was inoculated with the 2,4-D-degrading microorganism Flavorbacterium sp. strain FB4. The disappearance rate of 2,4-D was found to be greater than the rate predicted based upon liquid-phase 2,4-D concentrations. A kinetic formulation, termed the enhanced bioavailability model, was developed to describe the desorption and biodegradation processes in this batch system. The approach assumes that 2,4-D resides in both the liquid and solid phases and degradation occurs via both suspended and attached biomass. All biomass can degrade liquid-phase 2,4-D at one rate, while only attached biomass can degrade sorbed 2,4-D at another rate. An enhanced transformation factor (Ef) was introduced to express the increased biodegradation rate over that expected from the liquid phase only. This approach was able to account for the increased degradation rates observed experimentally. The results provide evidence that desorption to the bulk solution is not prerequisite to degradation, and that sorbed substrate may be available for degradation.  相似文献   

16.
The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and triallate [S-2,3,3-trichloroallyl di-isopropyl(thiocarbamate)] are extensively used to control broadleaf and wild oat (respectively) weed infestations in Canadian cereal crops. In 1990, for example, more than 3.8 million kg of 2,4-D and 2.7 million kg of triallate were applied in the three prairie provinces (Alberta, Saskatchewan, and Manitoba). Maximum air concentrations of these two herbicides during the summers of 1989 and 1990 near Regina, Saskatchewan, were 3.90 ng m(-3) (2,4-D) and 60.04 ng m(-3) (triallate). Concentrations of these two herbicides were also measured in bulk atmospheric deposition (wet plus dry) and in farm pond water and associated surface film. Maximum measured levels of 2,4-D were 3550 ng m(-2) d(-1) (bulk deposition), 332 ng m(-2) (surface film), and 290 ng L(-1) (pond water). Maximum levels of triallate were 2300 ng m(-2) d(-1) (bulk deposition), 212 ng m(-2) (surface film), and 500 ng L(-1) (pond water). The highest quantities of the herbicides tended to be found during or immediately after the time of regional application. The movement of the herbicides in the environment will be discussed in relation to the four matrices studied.  相似文献   

17.
The sorption of 2,4-D and glyphosate herbicides in soil was quantified for 287 surface soils (0-15 cm) collected in a 10 x 10 m grid across a heavily eroded, undulating, calcareous prairie landscape. Other variables that were determined included soil carbonate content, soil pH, soil organic carbon content (SOC), soil texture, soil loss or gain by tillage and water erosion, and selected terrain attributes and landform segments. The 2,4-D sorption coefficient (Kd) was significantly associated with soil carbonate content (-0.66; P < 0.001), soil pH (-0.63; P < 0.001), and SOC (0.47; P < 0.001). Upper slopes were strongly eroded and thus had a significantly greater soil carbonate content and less SOC compared with lower slopes that were in soil accumulation zones. The 2,4-D Kd was almost twice as small in upper slopes than in lower slopes. The 2,4-D Kd was also significantly associated with nine terrain attributes, particularly with compounded topographic index (0.59; P < 0.001), gradient (-0.48; P < 0.001), mean curvature (-0.43; P < 0.001), and plan curvature (-0.42 P < 0.001). Regression equations were generated to estimate herbicide sorption in soils. The predicted power of these equations increased for 2,4-D when selected terrain attributes were combined with soil properties. In contrast, the variation of glyphosate sorption across the field was much less dependent on our measured soil properties and calculated terrain attributes. We conclude that the integration of terrain attributes or landform segments in pesticide fate modeling is more advantageous for herbicides such as 2,4-D, whose sorption to soil is weak and influenced by subtle changes in soil properties, than for herbicides such as glyphosate that are strongly bound to soil regardless of soil properties.  相似文献   

18.
Iron oxides are important components influencing the adsorption of various inorganic and organic compounds in soils and sediments. In this study the adsorption on iron oxides of nonionic and ionic pesticides was determined as a function of solution pH, ionic strength, and pesticide concentration. The investigated iron oxides included two-line ferrihydrite, goethite, and lepidocrocite. Selected pesticides comprised atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea)], mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid], 2,4-D (2,4-dichlorophenoxyacetic acid), and bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. The adsorption of the nonionic pesticides (atrazine and isoproturon) was insignificant, whereas the adsorption of the acidic pesticides (mecoprop, 2,4-D, and bentazone) was significant on all investigated iron oxides. The adsorption capacity increased with decreasing pH, with maximum adsorption reached close to the pKa values. The addition of CaCl2 in concentrations from 0.0025 to 0.01 M caused the adsorption capacity to diminish. The adsorption of bentazone was significantly lower than the adsorption of mecoprop and 2,4-D, illustrating the importance of a carboxyl group in the pesticide structure. The adsorption capacity on the iron oxides increased in the order: lepidocrocite < goethite < two-line ferrihydrite. The maximum adsorption capacities of meco-prop and 2,4-D on goethite were found to be equivalent to the site density of singly coordinated hydroxyl groups on the faces of the dominant (110) form, suggesting that singly coordinated hydroxyl groups are responsible for adsorption. Differences in adsorption capacities between iron oxides can be explained by differences in the surface site density of singly coordinated hydroxyl groups. The maximum measured adsorption capacity of mecoprop on two-line ferrihydrite was equivalent to 0.2 mol/mol Fe.  相似文献   

19.
The fate of pesticides in aquifers is influenced by the small but not insignificant adsorption of pesticides to mineral surfaces. Batch experiments with five pesticides and four minerals were conducted to quantify the contributions to adsorption from different mineral surfaces and compare adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha-alumina. Selected pesticides comprised atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea)], mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid], 2,4-D (2,4-dichlorophenoxyacetic acid), and bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4-(3H)-one 2,2-dioxide]. Specific surface area and mineral surface charge proved to be important for the adsorption of these pesticides. Detectable adsorption of the anionic pesticides (mecoprop, 2,4-D, and bentazone) was only measured when positive sites were present on the mineral surface. However, when CaCl2 was added as an electrolyte, a detectable adsorption of mecoprop and 2,4-D was also measured on kaolinite (which exhibits a negative surface charge), probably due to formation of Ca-pesticide--surface complexes. Adsorption of the uncharged pesticides (atrazine and isoproturon) was detected only on kaolinite. The lack of adsorption on alpha-alumina indicates that the uncharged pesticides have a greater affinity for the silanol surface sites (=SiOH) than for the aluminol surface sites (=AlOH) in kaolinite. No measurable effect of ionic strength was found for the uncharged pesticides. The results indicate that quartz and calcite play a smaller role than clay minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号