首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
We present a 576‐year tree‐ring‐based reconstruction of streamflow for northern Utah's Weber River that exhibits considerable interannual and decadal‐scale variability. While the 20th Century instrumental period includes several extreme individual dry years, it was the century with the fewest such years of the entire reconstruction. Extended droughts were more severe in duration, magnitude, and intensity prior to the instrumental record, including the most protracted drought of the record, which spanned 16 years from 1703 to 1718. Extreme wet years and periods are also a regular feature of the reconstruction. A strong early 17th Century pluvial exceeds the early 20th Century pluvial in magnitude, duration, and intensity, and dwarfs the 1980s wet period that caused significant flooding along the Wasatch Front. The long‐term hydroclimatology of northern Utah is marked by considerable uncertainty; hence, our reconstruction provides water managers with a more complete record of water resource variability for assessment of the risk of droughts and floods for one of the largest and most rapidly growing population centers in the Intermountain West.  相似文献   

2.
ABSTRACT: Water resource planning is based primarily on 20th century instrumental records of climate and streamflow. These records are limited in length to approximately 100 years, in the best cases, and can reflect only a portion of the range of natural variability. The instrumental record neither can be used to gage the unusualness of 20th Century extreme low flow events, nor does it allow the detection of low‐frequency variability that may underlie short‐term variations in flow. In this study, tree rings are used to reconstruct mean annual streamflow for Middle Boulder Creek in the Colorado Front Range, a semi‐arid region of rapid growth and development. The reconstruction is based on a stepwise regression equation that accounts for 70 percent of the variance in the instrumental record, and extends from 1703–1987. The reconstruction suggests that the instrumental record of streamflow for Middle Boulder Creek is not representative of flow in past centuries and that several low flow events in the 19th century were more persistent than any in the 20th century. The 1840s to early 1850s period of low flow is a particularly notable event and may have coincided with a period of low flow in the Upper Colorado River Basin.  相似文献   

3.
ABSTRACT: Information regarding long term hydrological variability is critical for the effective management of surface water resources. In the Canadian Prairie region, growing dependence on major river systems for irrigation and other consumptive uses has resulted in an increasing vulnerability to hydrological drought and growing interprovincial tension. This study presents the first dendrochronological records of streamflow for Canadian Prairie rivers. We present 1,113‐year, 522‐year, and 325‐year reconstructions of total water year (October to September) streamflow for the North Saskatchewan, South Saskatchewan, and Saskatchewan Rivers, respectively. The reconstructions indicate relatively high flows during the 20th Century and provide evidence of past prolonged droughts. Low flows during the 1840s correspond with aridity that extended over much of the western United States. Similarly, an exceptional period of prolonged low flow conditions, approximately 900 A.D. to 1300 A.D., is coincident with evidence of sustained drought across central and western North America. The 16th Century megadrought of the western United States and Mexico, however, does not appear to have had a major impact on the Canadian rivers. The dendrohydrological records illustrate the risks involved if future water policy and infrastructure development in the Canadian Prairies are based solely on records of streamflow variability over the historical record.  相似文献   

4.
We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree‐ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree‐ring chronologies where high snowpack limits growth, which better represent the contribution of cool‐season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high‐intensity, long‐duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s‐1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm‐season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late‐19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands.  相似文献   

5.
ABSTRACT: A time series of annual flow of the Sacramento River, California, is reconstructed to A.D. 869 from tree rings for a long‐term perspective on hydrologic drought. Reconstructions derived by principal components regression of flow on time‐varying subsets of tree‐ring chronologies account for 64 to 81 percent of the flow variance in the 1906 to 1977 calibration period. A Monte Carlo analysis of reconstructed n‐year running means indicates that the gaged record contains examples of drought extremes for averaging periods of perhaps = 6 to 10 years, but not for longer and shorter averaging periods. For example, the estimated probability approaches 1.0 that the flow in A.D. 1580 was lower than the lowest single‐year gaged flow. The tree‐ring record also suggests that persistently high or low flows over 50‐year periods characterize some parts of the long‐term flow history. The results should contribute to sensible water resources planning for the Sacramento Basin and to the methodology of incorporating tree‐ring data in the assessment of the probability of hydrologic drought.  相似文献   

6.
Drought has been less extensively characterized in the humid South Atlantic compared to the arid western United States. Our objective was to characterize drought in the South Atlantic and to understand whether drought has become more severe in this region over time. Here we used monthly streamflow to characterize hydrological drought. Hydrological drought occurred when streamflow fell below the 20th percentile over three consecutive months and terminated once streamflow remained above the 20th percentile for three consecutive months. We characterized the frequency, duration, magnitude, and severity of events using the above definition. Significant changes in drought characteristics were tested with Mann‐Kendall over three periods: 1930‐2010, 1930‐1969, and 1970‐2010. We show that 71% of drought events were shorter than six months, while 7% were multiyear events. There was little evidence of trends in drought characteristics to support the claim of drought becoming more severe in the South Atlantic over the 20th Century. The one exception was a significant increase in the joint probability of nearby basins being simultaneously in drought conditions in the southern portion of the study area from 1970 to 2010. While drought characteristics have changed little through time, decreasing average streamflow in non drought periods coupled with increasing water demand provide the context within which recent multiyear drought events have produced significant stress on existing water infrastructure.  相似文献   

7.
Abstract: This article evaluates drought scenarios of the Upper Colorado River basin (UCRB) considering multiple drought variables for the past 500 years and positions the current drought in terms of the magnitude and frequency. Drought characteristics were developed considering water‐year data of UCRB’s streamflow, and basin‐wide averages of the Palmer Hydrological Drought Index (PHDI) and the Palmer Z Index. Streamflow and drought indices were reconstructed for the last 500 years using a principal component regression model based on tree‐ring data. The reconstructed streamflow showed higher variability as compared with reconstructed PHDI and reconstructed Palmer Z Index. The magnitude and severity of all droughts were obtained for the last 500 years for historical and reconstructed drought variables and ranked accordingly. The frequency of the current drought was obtained by considering two different drought frequency statistical approaches and three different methods of determining the beginning and end of the drought period (annual, 5‐year moving, and ten year moving average). It was concluded that the current drought is the worst in the observed record period (1923‐2004), but 6th to 14th largest in terms of magnitude and 1st to 12th considering severity in the past 500 years. Similarly, the current drought has a return period ranging from 37 to 103 years based on how the drought period was determined. It was concluded that if the 10‐year moving average is used for defining the drought period, the current drought appears less severe in terms of magnitude and severity in the last 500 years compared with the results using 1‐ and 5‐year averages.  相似文献   

8.
ABSTRACT: Samples from 107 piñon pines (Pinns edulis) at four sites were used to develop a proxy record of annual (June to June) precipitation spanning the 1226 to 2001 AD interval for the Uinta Basin Watershed of northeastern Utah. The reconstruction reveals significant precipitation variability at interannual to decadal scales. Single‐year dry events before the instrumental period tended to be more severe than those after 1900. In general, decadal scale dry events were longer and more severe prior to 1900. In particular, dry events in the late 13th, 16th, and 18th Centuries surpass the magnitude and duration of droughts seen in the Uinta Basin after 1900. The last four decades of the 20th Century also represent one of the wettest periods in the reconstruction. The proxy record indicates that the instrumental record (approximately 1900 to the Present) underestimates the potential frequency and severity of severe, sustained droughts in this area, while over representing the prominence of wet episodes. In the longer record, the empirical probability of any decadal scale drought exceeding the duration of the 1954 through 1964 drought is 94 percent, while the probability for any wet event exceeding the duration of the 1965 through 1999 wet spell is only 1 percent. Hence, estimates of future water availability in the Uinta Basin and forecasts for exports to the Colorado River, based on the 1961 to 1990 and 1971 to 2000 “normal” periods, may be overly optimistic.  相似文献   

9.
In water stressed regions, water managers are exploring new horizons that would help in long‐range streamflow forecasts. Oceanic‐atmospheric oscillations have been shown to influence streamflow variability. In this study, long‐lead time streamflow forecasts are made using a multiclass kernel‐based data‐driven support vector machine (SVM) model. The extended streamflow records based on tree ring reconstructions were used to provide a longer time series data. Reconstructed data were used from 1658 to 1952 and the instrumental record was used from 1953 to 2007. Reconstructions for oceanic‐atmospheric oscillations included the El Niño‐Southern Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, and North Atlantic Oscillation. Streamflow forecasts using all four oscillations were made with one‐year to five‐year lead times for 21 gages in the western United States. This is the first study that uses both instrumental and reconstructed data of oscillations in SVM model to improve streamflow forecast lead time. SVM model was able to provide “satisfactory” to “very good” forecasts with one‐ to five‐year lead time for the selected gages. The use of all the oscillation indices helped in achieving better predictability compared to using individual oscillations. The SVM modeling results are better when compared with multiple linear regression model forecasts. The findings are statistical in nature and are expected to be useful for long‐term water resources planning and management.  相似文献   

10.
Droughts constitute one of the most important factors affecting the design and operation of water resources infrastructure. Hydrologists ascertain their duration, severity, and pattern of recurrence from instrumental records of precipitation or stream‐flow. Under suitable conditions, and with proper analysis, tree rings obtained from long living, climate sensitive species of trees can extend instrumental records of streamflow and precipitation over periods spanning several centuries. Those tree‐ring “reconstructions” provide a valuable insight about climate variability and drought occurrence in the Holocene, and yield long term hydrological data useful in the design of water infrastructure. This work presents a derivation of drought risk based on a renewal model of drought recurrence, a brief review of the basic theory of tree‐ring reconstructions, and a stochastic model for optimizing the design of water supply reservoirs. Examples illustrate the methodology developed in this work and the supporting role that tree‐ring reconstructed streamflow can play in characterizing hydrologic variability.  相似文献   

11.
Abstract:  Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15.  相似文献   

12.
A statistical procedure is developed to adjust natural streamflows simulated by dynamical models in downstream reaches, to account for anthropogenic impairments to flow that are not considered in the model. The resulting normalized downstream flows are appropriate for use in assessments of future anthropogenically impaired flows in downstream reaches. The normalization is applied to assess the potential effects of climate change on future water availability on the Rio Grande at a gage just above the major storage reservoir on the river. Model‐simulated streamflow values were normalized using a statistical parameterization based on two constants that relate observed and simulated flows over a 50‐year historical baseline period (1964–2013). The first normalization constant is a ratio of the means, and the second constant is the ratio of interannual standard deviations between annual gaged and simulated flows. This procedure forces the gaged and simulated flows to have the same mean and variance over the baseline period. The normalization constants can be kept fixed for future flows, which effectively assumes that upstream water management does not change in the future, or projected management changes can be parameterized by adjusting the constants. At the gage considered in this study, the effect of the normalization is to reduce simulated historical flow values by an average of 72% over an ensemble of simulations, indicative of the large fraction of natural flow diverted from the river upstream from the gage. A weak tendency for declining flow emerges upon averaging over a large ensemble, with tremendous variability among the simulations. By the end of the 21st Century the higher‐emission scenarios show more pronounced declines in streamflow.  相似文献   

13.
ABSTRACT: Excessive nitrate‐nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28‐year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations.  相似文献   

14.
ABSTRACT: This paper considers the risk of drought and develops drought scenarios for use in the study of severe sustained drought in the Southwestern United States. The focus is on the Colorado River Basin and regions to which Colorado River water is exported, especially southern California, which depends on water from the Colorado River. Drought scenarios are developed using estimates of unimpaired historic streamflow as well as reconstructions of streamflow based on tree ring widths. Drought scenarios in the Colorado River Basin are defined on the basis of annual flow at Lees Ferry. The risk, in terms of return period, of the drought scenarios developed, is assessed using stochastic models.  相似文献   

15.
The article presents nonparametric methods based on K nearest neighbors (KNNs), modified KNNs, and local polynomial techniques to reconstruct streamflow ensembles from tree‐ring data in Filyos River region (Turkey). Three methods were tested using cross‐validation for the overlap period, 1963‐1997 for which the tree‐ring and streamflow data are available. It was found that for the study where the length of the overlap period was limited, a nonparametric method based on a local polynomial technique provides simulations that have a slightly better solution than the other methods. After verification using standard statistical techniques, these methods were utilized to develop streamflow reconstructions from tree‐ring data for the paleo‐hydrologic period (1657‐1963). These reconstructions of seasonal low and high flows were discussed with the obtained flood duration curve. They were also compared with the historical archives and other tree‐ring reconstructions data available in the same river. Overall, the utility and limitations of these methods and the resulting streamflow simulations were discussed to assess the long‐term discharge behavior of Filyos River and to evaluate water supply reliability.  相似文献   

16.
ABSTRACT: A set of procedures for identifying changes in selected streamflow characteristics at sites having long‐term continuous streamflow records is illustrated by using streamflow data from the Waccamaw River at Freeland, North Carolina for the 55‐year period of 1940–1994. Data were evaluated and compared to streamflow in the adjacent Lumber River Basin to determine if changes in streamflow characteristics in the Waccamaw River were localized and possibly the result of some human activity, or consistent with regional variations. Following 1963, droughts in the Waccamaw Basin seem to have been less severe than in the Lumber Basin, and the annual one‐, seven‐, and 30‐day low flows exhibited a slightly increasing trend in the Waccamaw River. Mean daily flows in the Waccamaw River at the 90 percent exceedance level (low flows) during 1985–194, a relatively dry period, were very nearly equal to flows at the same exceedance level for 1970–1979, which represents the 10‐year period between 1940 and 1994 with the highest flows. Prior to the 1980s, flows per unit drainage area in the Waccamaw Basin were generally less than those in the Lumber Basin, but after 1980, the opposite was true. The ratio of base flow to runoff in the Waccamaw River may have changed relative to that in the Lumber River in the late 1970s. There was greater variability in Waccamaw River streamflow than in Lumber River flow, and flow variability in the Waccamaw River may have increased slightly during 1985–1994.  相似文献   

17.
ABSTRACT: Frequent and persistent droughts exacerbate the problems caused by the inherent scarcity of water in the semiarid to arid parts of the southwestern United States. The occurrence of drought is driven by climatic variability, which for years before about the beginning of the 20th century in the Southwest must be inferred from proxy records. As part of a multidisciplinary study of the potential hydrologic impact of severe sustained drought on the Colorado River, the physical basis and limitations of tree rings as indicators of severe sustained drought are reviewed, and tree-ring data are analyzed to delineate a “worst-case” drought scenario for the Upper Colorado River Basin (UCRB). Runs analysis of a 121-site tree-ring network, 1600–1962, identifies a four-year drought in the 1660s as the longest-duration large-scale drought in the Southwest in the recent tree-ring record. Longer tree-ring records suggest a much longer and more severe drought in 1579–1598. The regression estimate of the mean annual Colorado River flow for this period is 10.95 million acre-feet, or 81 percent of the long-term mean. The estimated flows for the 1500s should be used with caution in impact studies because sample size is small and some reconstructed values are extrapolations.  相似文献   

18.
Streamflow monitoring in the Colorado River Basin (CRB) is essential to ensure diverse needs are met, especially during periods of drought or low flow. Existing stream gage networks, however, provide a limited record of past and current streamflow. Modeled streamflow products with more complete spatial and temporal coverage (including the National Water Model [NWM]), have primarily focused on flooding, rather than sustained drought or low flow conditions. Objectives of this study are to (1) evaluate historical performance of the NWM streamflow estimates (particularly with respect to droughts and seasonal low flows) and (2) identify characteristics relevant to model inputs and suitability for future applications. Comparisons of retrospective flows from the NWM to observed flows from the United States Geological Survey stream gage network over 22 years in the CRB reveal a tendency for underestimating low flow frequency, locations with low flows, and the number of years with low flows. We found model performance to be more accurate for the Upper CRB and at sites with higher precipitation, snow percent, baseflow index, and elevations. Underestimation of low flows and variable model performance has important implications for future applications: inaccurate evaluations of historical low flows and droughts, and less reliable performance outside of specific watershed/stream conditions. This highlights characteristics on which to focus future model development efforts.  相似文献   

19.
Abstract: Tree rings offer a means to extend observational records of streamflow by hundreds of years, but dendrohydrological techniques are not regularly applied to small tributary and headwaters gages. Here we explore the potential for extending three such gage records on small streams in the Wind River drainage of central Wyoming, United States. Using core samples taken from Douglas fir (Pseudotsuga menziesii), piñon pine (Pinus edulis), and limber pine (Pinus flexilis) at 38 sites, we were able to reconstruct streamflows for the headwaters of the Wind River back to 1672 AD or earlier. The streamflow reconstructions for Bull Lake Creek above Bull Lake; the Little Popo Agie River near Lander, Wyoming; and Wind River near Dubois, Wyoming explained between 40% and 64% of the observed variance, and these extended records performed well in a variety of statistical verification tests. The full reconstructions show pronounced inter‐annual variability in streamflow, and these proxy records also point to the prevalence of severe, sustained droughts in this region. These reconstructions indicate that the 20th Century was relatively wet compared to previous centuries, and actual gage records may capture only a limited subset of potential natural variability in this area. Further analyses reveal how tree‐ring based reconstructions for small tributary and headwaters gages can be strongly influenced by the length and quality of calibration records, but this work also demonstrates how the use of a spatially extensive network of tree‐ring sites can improve the quality of these types of reconstructions.  相似文献   

20.
Abstract: Long‐term flow records for watersheds with minimal human influence have shown trends in recent decades toward increasing streamflow at regional and national scales, especially for low flow quantiles like the annual minimum and annual median flows. Trends for high flow quantiles are less clear, despite recent research showing increased precipitation in the conterminous United States over the last century that has been brought about primarily by an increased frequency and intensity of events in the upper 10th percentile of the daily precipitation distribution – particularly in the Northeast. This study investigates trends in 28 long‐term annual flood series for New England watersheds with dominantly natural streamflow. The flood series are an average of 75 years in length and are continuous through 2006. Twenty‐five series show upward trends via the nonparametric Mann‐Kendall test, 40% (10) of which are statistically significant (p < 0.1). Moreover, an average standardized departures series for 23 of the study gages indicates that increasing flood magnitudes in New England occurred as a step change around 1970. The timing of this is broadly synchronous with a phase change in the low frequency variability of the North Atlantic Oscillation, a prominent upper atmospheric circulation pattern that is known to effect climate variability along the United States east coast. Identifiable hydroclimatic shifts should be considered when the affected flow records are used for flood frequency analyses. Special treatment of the flood series can improve the analyses and provide better estimates of flood magnitudes and frequencies under the prevailing hydroclimatic condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号