首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Observations of damage to vegetation, acute reductions in surface water pH, and kills of small fish prompted the Biomedical Operations and Research Office at the John F. Kennedy Space Center to initiate intensive environmental evaluations of possible acute and long-term chronic impacts that may be produced by repeated launches of the space shuttle. An important step in this evaluation was the identification of deposition patterns and the quantification of ecosystem loading rates of exhaust constituents from the solid rocket motors (SRMs) in the area of the launch pad. These constituents are primarily aluminum oxide (Al2O3) and hydrochloric acid (HCl). During three launches of the space transportation system (STS-11, 13, and 14) up to 100 bulk deposition collectors, 83 mm in diameter containing 100 ml of deionized water, were deployed in a grid pattern covering 12.6 ha north of launch pad 39-A. Estimates of HCl and particulate deposition levels were made based on laboratory measurements of items entrained in the collectors. Captured particulates consisted of a variety of items including Al2O3, sand grains, sea shell fragments, paint chips, and other debris ablated from the launch pad surface by the initial thrust of the SRMs. Estimated ranges of HCl and particulate deposition in the study area were 0–127 g/m2 and 0–246 g/m2, respectively. Deposition patterns were highly influenced by wind speed and direction. These measurements indicate that, under certain meteorological conditions, up to 7.1 × 103 kg of particulates and 3.4 × 103 kg of HCl can be deposited to the near-field environment beyond the launch pad perimeter fence.  相似文献   

2.
A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data showed that the model has a modest but significant ability to predict both salamander abundance and mass per unit area. The model was used to assess the impacts of alternative management plans for the Hoosier National Forest (Indiana, USA) on salamanders. These plans differed in the spatial delineation of management areas where timber harvest was permitted, and the intensity of timber harvest within those management areas. The spatial pattern of forest openings produced by alternative forest management scenarios based on these plans was projected over 150 years using a timber-harvest simulator (HARVEST). We generated a predictive map of salamander abundance for each scenario over time, and summarized each map by calculating mean salamander abundance and the mean colonization distance (average distance from map cells with low predicted abundance to those with relatively high abundance). Projected salamander abundance was affected more by harvest rate (area harvested each decade) than by the management area boundaries. The alternatives had a varying effect on the mean distance salamanders would have to travel to colonize regenerating stands. Our GIS modeling approach is an example of a spatial analytical tool that could help resource management planners to evaluate the potential ecological impact of management alternatives.  相似文献   

3.
Winter application of manure poses environmental risks. Seven continuous corn, instrumented watersheds (approximately 1 ha each) at the USDA-ARS North Appalachian Experimental Watershed research station near Coshocton, Ohio were used to evaluate the environmental impacts of winter manure application when using some of the Ohio Natural Resources Conservation Service recommendations. For 3 yr on frozen, sometimes snow-covered, ground in January or February, two watersheds received turkey litter, two received liquid swine manure, and three were control plots that received N fertilizer at planting (not manure). Manure was applied at an N rate for corn; the target level was 180 kg N ha(-1) with a 30-m setback from the application area to the bottom of each watershed. Four grassed plots (61 x 12 m) were used for beef slurry application (9.1 Mg ha(-1) wet weight); two plots had 61 x 12 m grassed filter areas below them, and two plots had 30 x 12 m filter areas. There were two control plots. Nutrient concentrations were sometimes high, especially in runoff soon after application. However, most events with high concentrations occurred with low flow volumes; therefore, transport was minimal. Applying manure at the N rate for crop needs resulted in excess application of P. Elevated P losses contributed to a greater potential of detrimental environmental impacts with P than with N. Filter strips reduced nutrient concentrations and transport, but the data were too limited to compare the effectiveness of the 30- and 61-m filter strips. Winter application of manure is not ideal, but by following prescribed guidelines, detrimental environmental impacts can be reduced.  相似文献   

4.
Soil fumigants are volatile compounds applied to agricultural land to control nematode populations, weeds, and crop diseases. Field trials used for measuring fumigant loss from soil to the atmosphere encompass only a small proportion of the near semi-infinite parameter combinations of environmental, agronomic, and meteorological conditions. One approach to supplement field observations uses a soil physics model for fumigant emission predictions. A model is first validated against existing field study observations and then used to extrapolate results to a wider range of edaphic and climatic conditions. This work compares field observations of 1,3-dichloropropene and chloropicrin emissions to predictions from the USDA soil model CHAIN_2D. Comparison between model predictions and field observations for a Florida and California study had values between 0.62 to 0.81 and 0.99 to 1.0 for discrete and cumulative emission flux, respectively. CHAIN_2D emission rates were then coupled to several USEPA air dispersion models (ISCST3, CALPUFF6) to extend emission estimates to near field air concentrations. CALPUFF6 predicted slightly higher 1-h maximum air concentrations than ISCST3 for the same source strength (26.2-36.0% for setbacks between 1 and 250 m from the field edge, respectively). A sensitivity analysis for the CHAIN_2D/ISCST3 coupled numerical system is provided, with several soil and irrigation parameters consistently the most sensitive. Changes in the depth of incorporation, tarp material, and initial soil water content illustrate the predicted impact to emission strength and resulting near-field air concentrations with reductions of cumulative emission loss from 8.1 to 71% and average 1-h maximum air concentration reductions between 6.2 and 41% depending on the mitigation strategy chosen. Additionally, a stochastic framework based on the published SOFEA system that couples variability in experiment, model sensitivity, and site specific attributes is outlined should regional air concentration estimates resulting from fumigant use be sought.  相似文献   

5.
Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS pollution management.  相似文献   

6.
ABSTRACT: Flow regulation impacts the ecology of major rivers in various ways, including altering river channel migration patterns. Many current meander migration models employ a constant annual flow or dominant discharge value. To assess how flow regulation alters river function, variable annual flows ‐ based on an empirical relationship between bank erosion rates and cumulative effective stream power ‐ were added into an existing migration model. This enhanced model was used to evaluate the potential geomorphic and ecological consequences of four regulated flow scenarios (i.e., different hydrographs) currently being proposed on the Sacramento River in California. The observed rate of land reworked correlated significantly with observed cumulative effective stream power during seven time increments from 1956 to 1975 (r2= 0.74, p = 0.02). The river was observed to rework 3.0 ha/yr of land (a mean channel migration rate of 7.7 m/yr) with rates ranging from 0.8 ha/yr to 5.1 ha/yr (2.0 to 13.3 m/yr), during the analyzed time periods. Modeled rates of land reworked correlated significantly with observed rates of land reworked for the variable flow model (r2= 0.78, p = 0.009). The meander migration scenario modeling predicted a difference of 1 to 8 percent between the four flow management scenarios and the base scenario.  相似文献   

7.
ABSTRACT: Analyses of cumulative impacts to riparian systems is an important yet elusive goal. Previous analyses have focused on comparing the number of hectares impacted to the number of hectares restored, without addressing the loss of riparian function or the effect of the spatial distribution of impacts. This paper presents an analysis of the spatial distribution of development‐related impacts to riparian ecosystems, that were authorized under Section 404 of the Clean Water Act. Impacts on habitat structure, contiguity, and landscape context were evaluated using functional indices scaled to regional reference sites. Impact sites were mapped using GIS and analyzed for spatial associations. Positive spatial autocorrelation (i.e. clustering of impact sites) resulted from the piecemeal approach to impact assessment, which failed to prevent cumulative impacts. Numerous small projects in close proximity have resulted in adverse impacts to entire stream reaches or have fragmented the aquatic resources to a point where overall functional capacity is impaired. Additionally, the ecological functions of unaffected areas have been diminished due to their proximity to degraded areas. A proactive approach to managing cumulative impacts is currently being used in Orange County, California as part of a Corps of Engineers sponsored Special Area Management Plan (SAMP). The SAMP process is evaluating the ecological conditions and physical processes of the study watersheds and attempting to plan future development in a manner that will guard against cumulative impacts.  相似文献   

8.
Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivision. The objectives of this paper are to show that evaluation of BMPs using a model is strongly linked to the level of watershed subdivision; to suggest a methodology for identifying an appropriate subdivision level; and to examine the efficacy of different BMPs at field and watershed scales. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, sediment, and nutrient yields at the outlet of the Dreisbach (623 ha) and Smith Fry (730 ha) watersheds in Maumee River Basin, Indiana. Grassed waterways, grade stabilization structures, field borders, and parallel terraces are the BMPs that were installed in the study area in the 1970s. Sediment and nutrient outputs from the calibrated model were compared at various watershed subdivision levels, both with and without implementation of these BMPs. Results for the study watersheds indicated that evaluation of the impacts of these BMPs on sediment and nutrient yields was very sensitive to the level of subdivision that was implemented in SWAT. An optimal watershed subdivision level for representation of the BMPs was identified through numerical simulations. For the study watersheds, it would appear that the average subwatershed area corresponding to approximately 4 percent of total watershed area is needed to represent the influence of these BMPs when using the SWAT model.  相似文献   

9.
Irrigated agriculture has resulted in substantial changes in water flows to the lower reaches of the River Murray. These changes have led to large-scale occurrences of dieback inEucalyptus largiflorens (black box) woodlands as well as increased inputs of salt to the river. Management options to address problems of this scale call for the use of spatial data sets via geographic information systems (GIS). A GIS exists for one floodplain of the River Murray at Chowilla, and a simple model predicted six health classes ofEucalyptus largiflorens based on groundwater salinity, flooding frequency, and groundwater depth.To determine the usefulness of the model for vegetation management, the quality of both the model and the GIS data sets were tested. Success of the testing procedure was judged by the degree of spatial matching between the model's predictions of health and that assessed from aerial photographs and by field truthing. Analyses at 80 sites showed that tree health was significantly greater where groundwater salinity was less than 40 dS/m or flooding occurred more frequently than 1 in 10 years or depth to groundwater exceeded 4 m. Testing of the GIS data sets found that vegetation was misclassified at 15% of sites. Association was shown between GIS-predicted values and field-truthed values of groundwater salinity but not groundwater depth. The GIS model of health is a useful starting point for future vegetation management and can be further improved by increasing the quality of the data coverages and further refining of the model to optimize parameters and thresholds.  相似文献   

10.
Abstract: The watershed scale Soil and Water Assessment Tool (SWAT) model divides watersheds into smaller subwatersheds for simulation of rainfall‐runoff and sediment loading at the field level and routing through stream networks. Typically, the SWAT model first needs to be calibrated and validated for accurate estimation through adjustment of sensitive input parameters (i.e., Curve Number values, USLE P, slope and slope‐length, and so on). However, in some instances, SWAT‐simulated results are greatly affected by the watershed delineation and Digital Elevation Models (DEM) cell size. In this study, the SWAT ArcView GIS Patch II was developed for steep sloping watersheds, and its performance was evaluated for various threshold values and DEM cell size scenarios when delineating subwatersheds using the SWAT model. The SWAT ArcView GIS Patch II was developed using the ArcView GIS Avenue program and Spatial Analyst libraries. The SWAT ArcView GIS Patch II improves upon the SWAT ArcView GIS Patch I because it reflects the topographic factor in calculating the field slope‐length of Hydrologic Response Units in the SWAT model. The simulated sediment value for 321 subwatersheds (watershed delineation threshold value of 25 ha) is greater than that for 43 subwatersheds (watershed delineation threshold value of 200 ha) by 201% without applying the SWAT ArcView GIS Patch II. However, when the SWAT ArcView GIS Patch II was applied, the difference in simulated sediment yield decreases for the same scenario (i.e., difference in simulated sediment with 321 subwatersheds and 43 subwatersheds) was 12%. The simulated sediment value for DEM cell size of 50 m is greater than that for DEM cell size of 10 m by 19.8% without the SWAT ArcView GIS Patch II. However, the difference becomes smaller (3.4% difference) between 50 and 10 m with the SWAT ArcView GIS Patch II for the DEM scenarios. As shown in this study, the SWAT ArcView GIS Patch II can reduce differences in simulated sediment values for various watershed delineation and DEM cell size scenarios. Without the SWAT ArcView GIS Patch II, variations in the SWAT‐simulated results using various watershed delineation and DEM cell size scenarios could be greater than those from input parameter calibration. Thus, the results obtained in this study show that the SWAT ArcView GIS Patch II should be used when simulating hydrology and sediment yield for steep sloping watersheds (especially if average slope of the subwatershed is >25%) for more accurate simulation of hydrology and sediment using the SWAT model. The SWAT ArcView GIS Patch II is available at http://www.EnvSys.co.kr/~swat for free download.  相似文献   

11.
ABSTRACT: The high spatial variability of nitrate concentrations in ground water of many regions is thought to be closely related to spatially-variable leaching rates from agricultural activities. To clarify the relative roles of the different nitrate leaching controlling variables under irrigated agriculture in northeastern Colorado, we conducted an extensive series of leaching simulations with the NLEAP model using best estimates of local agricultural practices. The results of these simulations were then used with GIS to estimate the spatial variability of leachate quality for a 14,000 ha area overlying the alluvial aquifer of the South Platte River. Simulations showed that in the study area, differences in soil type might lead to 5–10 kg/ha of N variation in annual leaching rates while variability due to crop rotations was as much as 65 kg-N/ha for common rotations. Land application of manure from confined animal feeding operations may account for more than 100 kg-N/ha additional leaching. For a selected index rotation, the simulated nitrogen leaching rates across the area varied from 10 to 299 kg/ha and simulated water volumes leached ranged from 13 to 76 cm/yr depending on soil type, irrigation type, and use of manure. Resulting leachate concentrations of 3.5–140 mg/l NO3 as N were simulated. Land application of manure was found to be the most important factor determining the mass flux of nitrate leached and the combination of sprinkler irrigation and manure application yields the highest leachate concentrations.  相似文献   

12.
Regulatory context for cumulative impact research   总被引:5,自引:0,他引:5  
Wetlands protection has become a topic of increased public attention and support, and regulation of wetlands loss under Section 404 of the Clean Water Act has received high priority within the US Environmental Protection Agency (EPA). Despite this, the nation is continuing to experience serious wetlands losses. This situation reflects the contentious nature of wetlands protection; it involves fundamental conflicts between environmental and development interests. Better information is needed to support regulatory decision making, including information on cumulative impacts. Currently, consideration of cumulative impacts, although required by various federal regulations, is limited. One reason is that most regulatory decisions are made on a permit-specific, site-specific basis, whereas cumulative impacts must be assessed on a broader, regional scale. In addition, scientific information and methods necessary to support cumulative impact assessment have been lacking. An anticipatory, planning-oriented framework to complement the existing site-specific permit review program is needed to support more effective consideration of cumulative impacts; such an effort is beginning to emerge. In addition, EPA is supporting research to provide better information on cumulative effects. It is recommended that the EPA program place initial emphasis on synthesis and analysis of existing information, on maximizing its use in decision making, and on information transfer. Recommended approaches include correlation of historic wetlands losses with loss of wetlands function and values, regional case studies, and development of indices of cumulative impact for use in permit review.Formerly Director, Office of Federal Activities, US Environmental Protection Agency  相似文献   

13.
Predicted climate warming is expected to have profound effects on bark beetle population dynamics in the southwestern United States. Temperature-mediated effects may include increases in developmental rates, generations per year, and changes in habitat suitability. As a result, the impacts of Dendroctonus frontalis and Dendroctonus mexicanus on forest resources are likely subject to amplification. To assess the implications of such change, we evaluated the generations per year of these species under three climate scenarios using a degree-day development model. We also assessed economic impacts of increased beetle outbreaks in terms of the costs of application of preventative silvicultural treatments and potential economic revenues forgone. Across the southwestern USA, the potential number of beetle generations per year ranged from 1–3+ under historical climate, an increase of 2–4+ under the minimal warming scenario and 3–5+ under the greatest warming scenario. Economic benefits of applying basal area reduction treatments to reduce forest susceptibility to beetle outbreaks ranged from 7.75/ha (NM) to7.75/ha (NM) to 95.69/ha (AZ) under historical conditions, and 47.96/ha (NM) to47.96/ha (NM) to 174.58/ha (AZ) under simulated severe drought conditions. Basal area reduction treatments that reduce forest susceptibility to beetle outbreak result in higher net present values than no action scenarios. Coupled with other deleterious consequences associated with beetle outbreaks, such as increased wildfires, the results suggest that forest thinning treatments play a useful role in a period of climate warming.  相似文献   

14.
Historically, manure has been recognized as an excellent soil amendment that can improve soil quality and provide nutrients for crop production. In areas of high animal density, however, the potential for water pollution resulting from improper storage or disposal of manure may be significant. The objective of this study was to determine the P balance of cultivated soils under barley (Hordeum vulgare L.) production that have received long-term annual manure amendments. Nonirrigated soils at the study site in Lethbridge, AB, Canada, have received 0, 30, 60, or 90 Mg manure ha(-1) (wet wt. basis) while irrigated plots received 0, 60, 120, and 180 Mg ha(-1) annually for 16 yr. The amount of P removed in barley grain and straw during the 16-yr period was between 5 and 18% of the cumulative manure P applied. There was a balance between P applied in manure and P recovered in crops and soils (to the 150-cm depth) of nonirrigated plots during the 16-yr study. In irrigated plots, as much as 1.4 Mg P ha(-1) added (180 Mg ha(-1) yr(-1) treatment) was not recovered over 16 yr, and was probably lost through leaching. The risk of ground water contamination with P from manure was greater in irrigated than nonirrigated plots that have received long-term annual manure amendments. Manure application rates should be reduced in nonirrigated and irrigated plots to more closely match manure P inputs to crop P requirements.  相似文献   

15.
This paper examines causes and consequences of wetland losses in coastal Louisiana. Land loss is a cumulative impact, the result of many impacts both natural and artificial. Natural losses are caused by subsidence, decay of abandoned river deltas, waves, and storms. Artificial losses result from flood-control practices, impoundments, and dredging and subsequent erosion of artificial channels. Wetland loss also results from spoil disposal upon wetlands and land reclamation projects.Total land loss in Louisiana's coastal zone is at least 4,300 ha/year. Some wetlands are converted to spoil banks and other eco-systems so that wetland losses are probably two to three times higher. Annual wetland losses in the Barataria Bay basin are 2.6% of the wetland area. Human activities are the principal determinants of land loss. The present total wetland area directly lost because of canals may be close to 10% if spoil area is included. The interrelationship between hydrology, land, vegetation, substrate, subsidence, and sediment supply are complicated; however, hydrologic units with high canal density are generally associated with higher rates of land loss and the rate may be accelerating.Some cumulative impacts of land loss are increased saltwater intrusion, loss of capacity to buffer the impact of storms, and large additions of nutrients. One measure of the impact is that roughly $8–17 × 106 (U.S.A.) of fisheries products and services are lost annually in Louisiana.Viewed at the level of the hydrologic unit, land loss transcends differences in local vegetation, substrate, geology, and hydrology. Land management should therefore focus at that level of organization. Proper guideline recommendations require an appreciation of the long-term interrelations of the wetland estuarine system.  相似文献   

16.
The Swift Creek catchment, the first catchment to be affected should any impact occur as a result of mining of the Jabiluka uranium ore deposit, is located partly within the World Heritage Kakadu National Park (KNP), and partly within the Jabiluka Mineral Lease (JML) that has been excised from KNP. Preliminary linking of a landform evolution model with a Geographic Information System (GIS) has been completed and tested on a catchment-wide basis for long-term total catchment management. This project represents the first attempt to apply the model on a catchment-wide basis in the region. Linking the model with a GIS enhances the modelling process, as the GIS assists in the derivation, storage, manipulation, processing and visualisation of geo-referenced data on a catchment-wide scale. This preliminary assessment of landform evolution in the Swift Creek catchment demonstrates the complex process associated with the parameterisation of the SIBERIA model, and illustrates the benefits of integrating GIS with landform evolution modelling techniques. Additional research is required to develop a more integrated GIS and landform evolution modelling approach to assessing the possible impacts of mining on catchment sedimentary and hydrological processes.  相似文献   

17.
A review of wetland impacts authorized under the New Jersey Freshwater Wetlands Protection Act (FWPA) was conducted based on permitting data compiled for the period 1 July 1988 to 31 December 1993. Data regarding the acreage of wetlands impacted, location of impacts by drainage basin and watershed, and mitigation were analyzed. Wetland impacts authorized and mitigation under New Jersey's program were evaluated and compared with Section 404 information available for New Jersey and other regions of the United States.Under the FWPA, 3003 permits were issued authorizing impacts to 234.76 ha (602.27 acres) of wetlands and waters. Compensatory mitigation requirements for impacts associated with individual permits required the creation of 69.20 ha. (171.00 acres), and restoration of 16.49 ha (40.75 acres) of wetlands. Cumulative impacts by watershed were directly related to levels of development and population growth.The FWPA has resulted in an estimated 67% reduction [44.32 ha (109.47 acres) vs 136.26 ha (336.56 acres)] in annual wetland and water impacts when compared with Section 404 data for New Jersey. For mitigation, the slight increase in wetland acreage over acreage impacted is largely consistent with Section 404 data.Based on this evaluation, the FWPA has succeeded in reducing the level of wetland impacts in New Jersey. However, despite stringent regulation of activities in and around wetlands, New Jersey continues to experience approximately 32 ha (79 acres) of unmitigated wetland impacts annually. Our results suggest that additional efforts focusing on minimizing wetland impacts and increasing wetlands creation are needed to attain a goal of no net loss of freshwater wetlands.  相似文献   

18.
Faced with the task of communicating their combined social, environmental and economic impact, water service providers are seeking to report overall performance in an aggregated way. Such a methodology must be scientifically robust, easily communicated and allow benchmarking of performance while reflecting a transition towards sustainability. In this paper the ecological footprint (EF) is calculated for Sydney Water Corporation (SWC), using input-output analysis and land disturbance in an innovative approach that overcomes problems identified in the original EF concept. This pilot study has allowed SWC to gain some valuable insights into its impacts: SWC's annual EF is about 73 100 ha in terms of land disturbance. Of this, 54 000 ha are projected to become disturbed as a consequence of climate change, with the remainder of 19 100 ha being disturbed on SWC's premises (2400 ha) and on those of upstream suppliers (16 700 ha). Total on-site impacts equal 9300 ha, while indirect land disturb ance contributes 63 600 ha. The EF appears promising as an educational and communi cation tool and may have potential as a decision support tool. However, further research is needed to incorporate downstream impacts into the EF, which would have significant benefits to SWC in terms of assessing and communicating the organization's overall progress towards sustainability.  相似文献   

19.
ABSTRACT: Erosion and sedimentation data from research watersheds in the Silver Creek Study Area in central Idaho were used to test the prediction of logging road erosion using the R1-R4 sediment yield model, and sediment delivery using the “BOISED” sediment yield prediction model. Three small watersheds were instrumented and monitored such that erosion from newly constructed roads and sediment delivery to the mouths of the watersheds could be measured for four years following road construction. The errors for annual surface erosion predictions for the two standard road tests ranged from +31.2 t/ha/yr (+15 percent) to -30.3 t/ha/yr (-63 percent) with an average of zero t/ha/yr and a standard deviation of the differences of 18.7 t/ha/yr. The annual prediction errors for the three watershed scale tests had a greater range from -40.8 t/ha/yr (-70 percent) to +65.3 t/ha/yr (+38 percent) with a mean of -1.9 t/ha/yr and a standard deviation of the differences of 25.2 t/ha/yr. Sediment yields predicted by BOISED (watershed scale tests) were consistently greater (average of 2.5 times) than measured sediment yields. Hillslope sediment delivery coefficients in BOISED appear to be overly conservative to account for average site conditions and road locations, and thus over-predict sediment delivery. Mass erosion predictions from BOISED appear to predict volume well (465 tonnes actual versus 710 tonnes predicted, or a 35 percent difference) over 15 to 20 years, however mass wasting is more episodic than the model predicts.  相似文献   

20.
Remote Sensing of Landscape-Level Coastal Environmental Indicators   总被引:5,自引:1,他引:4  
Advances in technology and decreases in cost are making remote sensing (RS) and geographic information systems (GIS) practical and attractive for use in coastal resource management. They are also allowing researchers and managers to take a broader view of ecological patterns and processes. Landscape-level environmental indicators that can be detected by Landsat Thematic Mapper (TM) and other remote sensors are available to provide quantitative estimates of coastal and estuarine habitat conditions and trends. Such indicators include watershed land cover, riparian buffers, shoreline and wetland changes, among others. With the launch of Landsat 7, the cost of TM imagery has dropped by nearly a factor of 10, decreasing the cost of monitoring large coastal areas and estuaries. New satellites, carrying sensors with much finer spatial (1-5 m) and spectral (200 narrow bands) resolutions are being launched, providing a capability to more accurately detect changes in coastal habitat and wetland health. Advances in the application of GIS help incorporate ancillary data layers to improve the accuracy of satellite land-cover classification. When these techniques for generating, organizing, storing, and analyzing spatial information are combined with mathematical models, coastal planners and managers have a means for assessing the impacts of alternative management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号