首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This study analyzed stream characteristics in a mountain watershed in southwestern Colorado and developed a three‐level hierarchical classification scheme using national datasets to demonstrate jurisdictional evaluation as “waters of the United States (U.S.)” under U.S. Clean Water Act Section 404 at the watershed scale. The National Hydrography Dataset and USGS StreamStats were used with field observations to classify streams in the 53 km2 Cement Creek Watershed based on flow duration (Level 1), stream order (Level 2), and other biophysical metrics (Level 3). Kruskal‐Wallis tests and discriminant analysis showed significant differences among Level 2 classes. Level 3 classification used cluster analysis for stream length, distance to the downstream traditional navigable water (TNW), and the ratio of mean annual flow from the source stream to the TNW. Results showed all perennial and intermittent streams are jurisdictional relatively permanent waters (RPWs), which include over a third of all streams, 64% are intermittent or ephemeral, and almost half are ephemeral first order. All ephemeral reaches are non‐RPWs requiring significant nexus evaluation to determine jurisdiction. These ephemeral first‐order streams can contribute 5% of the annual flow to the TNW at the confluence, while the Cement Creek main stem contributes 21% of the TNW flow. The study demonstrated that the classification provides key biophysical and regulatory information to aid jurisdictional evaluations in mountain watersheds.  相似文献   

2.
Streams are naturally hierarchical systems, and their biota are affected by factors effective at regional to local scales. However, there have been only a few attempts to quantify variation in ecological attributes across multiple spatial scales. We examined the variation in several macroinvertebrate metrics and environmental variables at three hierarchical scales (ecoregions, drainage systems, streams) in boreal headwater streams. In nested analyses of variance, significant spatial variability was observed for most of the macroinvertebrate metrics and environmental variables examined. For most metrics, ecoregions explained more variation than did drainage systems. There was, however, much variation attributable to residuals, suggesting high among-stream variation in macroinvertebrate assemblage characteristics. Nonmetric multidimensional scaling (NMDS) and multiresponse permutation procedure (MRPP) showed that assemblage composition differed significantly among both drainage systems and ecoregions. The associated R-statistics were, however, very low, indicating wide variation among sites within the defined landscape classifications. Regional delineations explained most of the variation in stream water chemistry, ecoregions being clearly more influential than drainage systems. For physical habitat characteristics, by contrast, the among-stream component was the major source of variation. Distinct differences attributable to stream size were observed for several metrics, especially total number of taxa and abundance of algae-scraping invertebrates. Although ecoregions clearly account for a considerable amount of variation in macroinvertebrate assemblage characteristics, we suggest that a three-tiered classification system (stratification through ecoregion and habitat type, followed by assemblage prediction within these ecologically meaningful units) will be needed for effective bioassessment of boreal running waters.  相似文献   

3.
Little attention has been given to the ecology of intermittent coastal plain streams in the southeastern United States, and it is not known whether available macroinvertebrate biomonitoring methods reliably detect degradation in these streams. This study compared differences in biomonitoring metrics between reference and agricultural streams, and between the flow period (January-April) and the intermittent flow period (May-December). Percentages of crustaceans, isopods, and Ephemeroptera-Plecoptera-Trichoptera (EPT) were significantly higher at the reference site than the two most impacted sites during the flow period, probably resulting from the abundance of leaf litter and lower temperatures. During this same period, the agriculturally impacted sites had a significantly higher percentage of dipterans--a group that thrives in the silty, nutrient-rich waters. Four metrics (percent Crustacea, Isopoda, Diptera, and EPT) had no overlap between values for the most impacted and the least impacted sites during the flow period, but no metrics were able to detect more discrete differences among sites. Sites were physically and biologically similar during the intermittent period when natural stresses (i.e., stagnant water, high temperatures, low dissolved oxygen) were high, with many metrics, such as percentages of dominant family, burrowers, chironomids, and dipterans becoming similar at all sites. Our findings indicate that development of a better understanding of invertebrate fauna in reference conditions and of the natural variation in intermittent streams is necessary to develop effective biomonitoring programs for these systems.  相似文献   

4.
Abstract: Consistency in determining Rosgen stream types was evaluated in 12 streams within the John Day Basin, northeastern Oregon. The Rosgen classification system is commonly used in the western United States and is based on the measurement of five stream attributes: entrenchment ratio, width‐to‐depth ratio, sinuosity, slope, and substrate size. Streams were classified from measurements made by three monitoring groups, with each group fielding multiple crews that conducted two to three independent surveys of each stream. In only four streams (33%) did measurements from all crews in all monitoring groups yield the same stream type. Most differences found among field crews and monitoring groups could be attributed to differences in estimates of the entrenchment ratio. Differences in entrenchment ratio were likely due to small discrepancies in determination of maximum bankfull depth, leading to potentially large differences in determination of Rosgen’s flood‐prone width and consequent values of entrenchment. The result was considerable measurement variability among crews within a monitoring group, and because entrenchment ratio is the first discriminator in the Rosgen classification, differences in the assessment of this value often resulted in different determination of primary stream types. In contrast, we found that consistently evaluated attributes, such as channel slope, rarely resulted in any differences in classification. We also found that the Rosgen method can yield nonunique solutions (multiple channel types), with no clear guidance for resolving these situations, and we found that some assigned stream types did not match the appearance of the evaluated stream. Based on these observations we caution the use of Rosgen stream classes for communicating conditions of a single stream or as strata when analyzing many streams due to the reliance of the Rosgen approach on bankfull estimates which are inherently uncertain.  相似文献   

5.
ABSTRACT: Macroinvertebrate community data collected from streams in Wyoming were assessed at various scales: within one stream reach, between stream reaches within one stream, between streams, and between stream classes. Fourteen indices including number of individuals/m2, biomass/m2, number of taxa, Shannon's diversity index, and functional feeding group ratios were used to compare macroinvertebrates by stream reach and stream class. Statistical analysis indicated that for five of the 14 indices, significant variability occurred between macroinvertebrate communities within one reach. For two of the remaining nine indices there was significant variability between communities from several reaches within the same stream. For seven of the nine indices, there was significant variability among macroinvertebrate communities from streams of the same class. Variability among the macroinvertebrate communities from the three stream classes was significantly different for seven of the nine indices. ANOVA results suggest that macroinvertebrate communities from different samples within one reach and between reaches within one stream were more comparable than those from different streams and different stream classes.  相似文献   

6.
Stream fish bioassessment methods assume that fish assemblages observed in sample sites reflect responses to local stressors, but fish assemblages are influenced by local factors as well as regional dispersal to and from connected streams. We hypothesized that fish movement to and from refugia and source populations in connected rivers (i.e., riverine dispersal) would weaken or decouple relations between fish community metrics and local environmental conditions. We compared fish-environment relations between streams that flow into large rivers (mainstem tributaries) and streams that lack riverine confluences (headwater tributaries) at multiple spatial grains using data from the USEPA's Environmental Monitoring and Assessment Program in the mid-Atlantic highlands, USA (n = 157 sites). Headwater and mainstem tributaries were not different in local environmental conditions, but showed important differences in fish metric responses to environmental quality gradients. Stream sites flowing into mainstem channels within 10 fluvial km showed consistently weaker relations to local environmental conditions than stream sites that lacked such mainstem connections. Moreover, these patterns diminished at longer distances from riverine confluences, consistent with the hypothesis of riverine dispersal. Our results suggest that (1) the precision of fish bioassessment metrics may be improved by calibrating scoring criteria based on the spatial position of sites within stream networks and (2) the spatial grain of fish bioassessment studies may be manipulated to suit objectives by including or excluding fishes exhibiting riverine dispersal.  相似文献   

7.
Procopio, Nicholas A., 2010. Hydrologic and Morphologic Variability of Streams With Different Cranberry Agriculture Histories, Southern New Jersey, United States. Journal of the American Water Resources Association (JAWRA) 46(3):527-540. DOI: 10.1111/j.1752-1688.2010.00432.x Abstract: The creation of reservoirs and the modification of stream channels are common practices used to facilitate the efficient production of cranberries. The potential impacts to hydrologic and geomorphic aspects of streamflow and channel structure have not been adequately assessed. In this study, the streamflow regime of 12 streams and the channel morphologies of 11 streams were compared for study sites in the Pinelands region of New Jersey with upstream active-cranberry bogs, upstream abandoned-cranberry bogs, and basins with no apparent agricultural history. Flow regime metrics included measures of low-flow, median-flow, and bankfull discharge, two measures of streamflow variability (spread and a modified Richards-Baker Flashiness index), and the frequency of overbank flooding. Stream-channel morphology metrics included average bank slope, average bankfull width, average bankfull depth, average bankfull width-to-depth ratio, and average bankfull area. No significant differences between stream types were apparent for any of the metrics. Basin-area normalized streamflow values of all 12 study sites were highly correlated to each other. Significant relationships existed between some of the flow-regime and channel-morphology metrics. Due to the lack of significant differences between stream types, it appears that neither historic nor current cranberry agricultural practices considerably influence flow regimes or the channel morphology of streams in the New Jersey Pinelands.  相似文献   

8.
ABSTRACT: Successful stream rehabilitation requires a shift from narrow analysis and management to integrated understanding of the links between human actions and changing river health. At study sites in the Puget Sound lowlands of western Washington State, landscape, hydrological, and biological conditions were evaluated for streams flowing through watersheds with varying levels of urban development. At all spatial scales, stream biological condition measured by the benthic index of biological integrity (B‐IBI) declined as impervious area increased. Impervious area alone, however, is a flawed surrogate of river health. Hydrologic metrics that reflect chronic altered streamflows, for example, provide a direct mechanistic link between the changes associated with urban development and declines in stream biological condition. These measures provide a more sensitive understanding of stream basin response to urban development than do treatment of each increment of impervious area equally. Land use in residential backyards adjacent to streams also heavily influences stream condition. Successful stream rehabilitation thus requires coordinated diagnosis of the causes of degradation and integrative management to treat the range of ecological stressors within each urban area, and it depends on remedies appropriate at scales from backyards to regional storm water systems.  相似文献   

9.
Abstract: Streams draining mountain headwater areas of the western Mojave Desert are commonly physically isolated from downstream hydrologic systems such as springs, playa lakes, wetlands, or larger streams and rivers by stream reaches that are dry much of the time. The physical isolation of surface flow in these streams may be broken for brief periods after rainfall or snowmelt when runoff is sufficient to allow flow along the entire stream reach. Despite the physical isolation of surface flow in these streams, they are an integral part of the hydrologic cycle. Water infiltrated from headwater streams moves through the unsaturated zone to recharge the underlying ground‐water system and eventually discharges to support springs, streamflow, isolated wetlands, or native vegetation. Water movement through thick unsaturated zones may require several hundred years and subsequent movement through the underlying ground‐water systems may require many thousands of years – contributing to the temporal isolation of mountain headwater streams.  相似文献   

10.
When native grassland catchments are converted to pasture, the main effects on stream physicochemistry are usually related to increased nutrient concentrations and fine-sediment input. We predicted that increasing nutrient concentrations would produce a subsidy-stress response (where several ecological metrics first increase and then decrease at higher concentrations) and that increasing sediment cover of the streambed would produce a linear decline in stream health. We predicted that the net effect of agricultural development, estimated as percentage pastoral land cover, would have a nonlinear subsidy-stress or threshold pattern. In our suite of 21 New Zealand streams, epilithic algal biomass and invertebrate density and biomass were higher in catchments with a higher proportion of pastoral land cover, responding mainly to increased nutrient concentration. Invertebrate species richness had a linear, negative relationship with fine-sediment cover but was unrelated to nutrients or pastoral land cover. In accord with our predictions, several invertebrate stream health metrics (Ephemeroptera–Plecoptera–Trichoptera density and richness, New Zealand Macroinvertebrate Community Index, and percent abundance of noninsect taxa) had nonlinear relationships with pastoral land cover and nutrients. Most invertebrate health metrics usually had linear negative relationships with fine-sediment cover. In this region, stream health, as indicated by macroinvertebrates, primarily followed a subsidy-stress pattern with increasing pastoral development; management of these streams should focus on limiting development beyond the point where negative effects are seen.  相似文献   

11.
Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the “Ecological Limits of Hydrologic Alteration (ELOHA)”. The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81–2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.  相似文献   

12.
Defining stream reference conditions is integral to providing benchmarks to ecological perturbation. We quantified channel geometry, hydrologic and environmental variables, and macroinvertebrates in 62 low‐gradient, SE United States (U.S.) Sand Hills (Level IV ecoregion) sand‐bed streams. To identify hydrogeomorphic reference condition (HGM), we clustered channel geometry deviation from expectations given watershed area (Aws), resulting in two HGM groups discriminated by area at the top of bank (Atob) residuals <0.6 m2 and >0.6 m2 predicted to be HGM reference/nonreference streams, respectively. Two independent partial least squares discriminate analyses used (1) hydrologic/environmental variables and (2) macroinvertebrate mean trait values (mT) on 10 reference/nonreference stream pairs of similar Aws for classification validation. Nonreference streams had flashier hydrographs and altered flow magnitudes, lower organic matter, coarser substrate, higher pH/specific conductivity compared with reference streams. Macroinvertebrate assemblages corresponded to HGM groupings, with mT indicative of multivoltinism, collector‐gatherer functional feeding groups, fast current‐preference taxa, and lower Ephemeroptera, Plecoptera, and Trichoptera richness and biotic integrity in nonreference streams. HGM classifications in Sand Hills, sand‐bed streams were determined from channel geometry. This easily implemented classification is indicative of contemporary hydrologic disturbance resulting in contrasting macroinvertebrate assemblages.  相似文献   

13.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   

14.
15.
Our lack of understanding of relationships between stream biotic communities and surrounding landscape conditions makes it difficult to determine the spatial scale at which management practices are best assessed. We investigated these relationships in the Minnesota River Basin, which is divided into major watersheds and agroecoregions which are based on soil type, geologic parent material, landscape slope steepness, and climatic factors affecting crop productivity. We collected macroinvertebrate and stream habitat data from 68 tributaries among three major watersheds and two agroecoregions. We tested the effectiveness of the two landscape classification systems (i.e., watershed, agroecoregion) in explaining variance in habitat and macroinvertebrate metrics, and analyzed the relative influence on macroinvertebrates of local habitat versus regional characteristics. Macroinvertebrate community composition was most strongly influenced by local habitat; the variance in habitat conditions was best explained at the scale of intersection of major watershed and agroecoregion (i.e., stream habitat conditions were most homogeneous within the physical regions of intersection of these two landscape classification systems). Our results are consistent with findings of other authors that most variation in macroinvertebrate community data from large agricultural catchments is attributable to local physical conditions. Our results are the first to test the hypothesis and demonstrate that the scale of intersection best explains these variances. The results suggest that management practices adjusted for both watershed and ecoregion characteristics, with the goal of improving physical habitat characteristics of local streams, may lead to better basin-wide water quality conditions and stream biological integrity.  相似文献   

16.
Whether a waterway is temporary or permanent influences regulatory protection guidelines, however, classification can be subjective due to a combination of factors, including time of year, antecedent moisture conditions, and previous experience of the field investigator. Our objective was to develop a standardized protocol using publically available spatial information to classify ephemeral, intermittent, and perennial streams. Our hypothesis was that field observations of flow along the stream channel could be compared to results from a hydrologic model, providing an objective method of how these stream reaches can be identified. Flow‐state sensors were placed at ephemeral, intermittent, and perennial stream reaches from May to December 2011 in the Appalachian coal basin of eastern Kentucky. This observed flow record was then used to calibrate the simulated saturation deficit in each channel reach based on the topographic wetness index used by TOPMODEL. Saturation deficit values were categorized as flow or no‐flow days, and the simulated record of streamflow was compared to the observed record. The hydrologic model was more accurate for simulating flow during the spring and fall seasons. However, the model effectively identified stream reaches as intermittent and perennial in each of the two basins.  相似文献   

17.
ABSTRACT: One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady‐state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature.  相似文献   

18.
Rapid field-based protocols for classifying flow permanence of headwater streams are needed to inform timely regulatory decisions. Such an existing method was developed for and has been used in North Carolina since 1998. The method uses ordinal scoring of 26 geomorphology, hydrology, and biology attributes of streams. The attribute scores are summed and compared to threshold scores to assign a flow permanence class. Our study objective was to evaluate the method’s ability to classify the flow permanence of forested stream reaches from Piedmont and Southeastern Plains ecoregions in South Carolina. Ephemeral reaches scored significantly lower than intermittent and perennial reaches, but scores from intermittent and perennial reaches did not differ. Scores collected in the dry and wet seasons were strongly correlated, indicating that the method was seasonally stable. Scores had positive nonlinear relationships with the maximum recorded wet duration and the proportion of the record that reaches were wet, but were not related to drying frequency. Scores of the presence of baseflow in the dry season were more important in flow permanence classification than those from the wet season. Other important attributes and parameters in discriminating flow classes were macrobenthos, rooted upland plants, bankfull width, drainage area, and ecoregion. Although the North Carolina method did not consistently differentiate intermittent from perennial reaches, the indicator-based approach is a strong foundation from which to build a protocol for South Carolina. Adding measures like bankfull width and drainage area, weighting by ecoregion, or shifting thresholds may be warranted modifications for South Carolina.  相似文献   

19.
ABSTRACT: Hydrograph analysis of six streams on the south shore of Long Island indicates that eastward urbanization during the last three decades has significantly reduced base flow to streams. Before urbanization, roughly 95 percent of total annual stream flow on Long Island was base flow. In urbanized southwestern Nassau County, storm water sewerage, increased impervious surface area, and sanitary sewerage have reduced base flow to 20 percent of total stream flow. In an adjacent urbanized but unsewered area in southeastern Nassau County, base flow has decreased to 84 percent of total annual stream flow. In contrast, base flow in two streams in rural areas has remained virtually constant, averaging roughly 95 percent of total annual flow throughout the 1955-70 study period. Double-mass curve analysis of base flow as a percentage of total annual stream flow indicates that (1) changes in stream flow characteristics began in the early 1960's in the sewered area and in the late 1960's in the later urbanized, unsewered area, and (2) a new equilibrium has been established between the streams in the sewered area and the new hydrologic characteristics of their urbanized drainage basins.  相似文献   

20.
With economic development in China, human-induced pressures on aquatic environments have grown and created an urgent need for tools measuring the ecological condition of aquatic systems. However, biological indicators for wadeable streams in China were poorly developed. This study developed and validated a multi-metric index of fish assemblages for wadeable streams of southern China to meet the requirement of the water project which has been carried on in China in recent years. Fifty-seven stream sites were sampled in April–May and November–December 2010 to develop an index of biotic integrity. A set of 45 candidate metrics were evaluated for range, responsiveness and redundancy, resulting in the selection of six metrics for the index: number of native species, number of rheophilic species, proportion of benthic riffle individuals, number of lithophilic species, number of omnivore species, and number of fish per hour sampling. The publicly available census data were used as independent data set to validate our method. Twenty-three sites were assessed as subject to significant (SP) or non-significant pressures (NSP) based on anthropogenic pressure evaluation. Our index performed well in discriminating NSP and SP sites, which suggested that our method could provide an accurate measure for wadeable streams ecosystem condition. We believe this integrated approach would meet the requirements for the water projects of China, and the process of developing the method could be used as reference for managing the subtropical streams in other areas of China or other states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号