首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed.  相似文献   

2.
Abstract: Riparian buffer forests and vegetative filter strips are widely recommended for improving surface water quality, but grass‐shrub riparian buffer system (RBSs) are less well studied. The objective of this study was to assess the influence of buffer width and vegetation type on the key processes and overall reductions of total suspended solids (TSS), phosphorus (P), and nitrogen (N) from simulated runoff passed through established (7‐year old) RBSs. Nine 1‐m RBS plots, with three replicates of three vegetation types (all natural selection grasses, two‐segment buffer with native grasses and plum shrub, and two‐segment buffer with natural selection grasses and plum shrub) and widths ranging from 8.3 to 16.1 m, received simulated runoff having 4,433 mg/l TSS from on‐site soil, 1.6 mg/l total P, and 20 mg/l total N. Flow‐weighted samples were collected by using Runoff Sampling System (ROSS) units. The buffers were very efficient in removal of sediments, N, and P, with removal efficiencies strongly linked to infiltration. Mass and concentration reductions averaged 99.7% and 97.9% for TSS, 91.8% and 42.9% for total P, and 92.1% and 44.4% for total N. Infiltration alone could account for >75% of TSS removal, >90% of total P removal, and >90% of total N removal. Vegetation type induced significant differences in removal of TSS, total P, and total N. These results demonstrate that adequately designed and implemented grass‐shrub buffers with widths of only 8 m provide for water quality improvement, particularly if adequate infiltration is achieved.  相似文献   

3.
Meta-analysis of nitrogen removal in riparian buffers   总被引:3,自引:0,他引:3  
Riparian buffers, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and reducing nitrogen loads entering water bodies. Riparian buffer width is thought to be positively related to nitrogen removal effectiveness by influencing nitrogen retention or removal. We surveyed the scientific literature containing data on riparian buffers and nitrogen concentration in streams and groundwater to identify trends between nitrogen removal effectiveness and buffer width, hydrological flow path, and vegetative cover. Nitrogen removal effectiveness varied widely. Wide buffers (>50 m) more consistently removed significant portions of nitrogen entering a riparian zone than narrow buffers (0-25 m). Buffers of various vegetation types were equally effective at removing nitrogen but buffers composed of herbaceous and forest/herbaceous vegetation were more effective when wider. Subsurface removal of nitrogen was efficient, but did not appear to be related to buffer width, while surface removal of nitrogen was partly related to buffer width. The mass of nitrate nitrogen removed per unit length of buffer did not differ by buffer width, flow path, or buffer vegetation type. Our meta-analysis suggests that buffer width is an important consideration in managing nitrogen in watersheds. However, the inconsistent effects of buffer width and vegetation on nitrogen removal suggest that soil type, subsurface hydrology (e.g., soil saturation, groundwater flow paths), and subsurface biogeochemistry (organic carbon supply, nitrate inputs) also are important factors governing nitrogen removal in buffers.  相似文献   

4.
Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production.  相似文献   

5.
Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the variable source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffers capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.  相似文献   

6.
The effectiveness of vegetative buffer strips (VBS) for reducing herbicide transport has not been well documented for runoff prone soils. A multi‐year plot‐scale study was conducted on an eroded claypan soil with the following objectives: (1) assess the effects of buffer width, vegetation, and season on runoff transport of atrazine (ATR), metolachlor (MET), and glyphosate; (2) develop VBS design criteria for herbicides; and (3) compare differences in soil quality among vegetation treatments. Rainfall simulation was used to create uniform antecedent soil water content and to generate runoff. Vegetation treatment and buffer width impacted herbicide loads much more than season. Grass treatments reduced herbicide loads by 19‐28% and sediment loads by 67% compared to the control. Grass treatments increased retention of dissolved‐phase herbicides by both infiltration and adsorption, but adsorption accounted for the greatest proportion of retained herbicide load. This latter finding indicated VBS can be effective on poorly drained soils or when the source to buffer area ratio is high. Grass treatments modestly improved surface soil quality 8‐13 years after establishment, with significant increases in organic C, total N, and ATR and MET sorption compared to continuously tilled control. Herbicide loads as a function of buffer width were well described by first‐order decay models which indicated VBS can provide significant load reductions under anticipated field conditions.  相似文献   

7.
Vegetated buffers strips typically have limited ability to reduce delivery of dissolved phosphorus (DP) from agricultural fields to surface waters. A field study was conducted to evaluate the ability of buffer strips enhanced with drinking water treatment residuals (WTRs) to control runoff P losses from surface-applied biosolids characterized by high water-extractable P (4 g kg(-)(1)). Simulated rainfall (62.4 mm h(-1)) was applied to grassed plots (3 m x 10.7 m including a 2.67 m downslope buffer) surface-amended with biosolids at 102 kg P ha(-1) until 30 min of runoff was collected. With buffer strips top-dressed with WTR (20 Mg ha(-1)), runoff total P (TP = 2.5 mg L(-1)) and total DP (TDP = 1.9 mg L(-1)) were not statistically lower (alpha = 0.05) compared to plots with unamended grass buffers (TP = 2.7 mg L(-1); TDP = 2.6 mg L(-1)). Although the applied WTR had excess capacity (Langmuir P maxima of 25 g P kg(-1)) to sorb all runoff P, kinetic experiments suggest that sheet flow travel time across the buffers ( approximately 30 s) was insufficient for significant P reduction. Effective interception of dissolved P in runoff water by WTR-enhanced buffer strips requires rapid P sorption kinetics and hydrologic flow behavior ensuring sufficient runoff residence time and WTR contact in the buffer. Substantial phosphate-adsorbent contact opportunity may be more easily achieved by incorporating WTRs into P-enriched soils or blending WTRs with applied P sources.  相似文献   

8.
ABSTRACT: Forest and grass riparian buffers have been shown to be effective best management practices for controlling nonpoint source pollution. However, little research has been conducted on giant cane [Arundinaria gigantea (Walt. Muhl.)], a formerly common bamboo species, native to the lower midwestern and southeastern United States, and its ability to reduce nutrient loads to streams. From May 2002 through May 2003, orthophosphate or dissolved reactive phosphate (DRP) concentrations in ground water were measured at successive distances from the field edge through 12 m of riparian buffers of both giant cane and mixed hardwood forest along three streams draining agricultural land in the Cache River watershed in southern Illinois. Giant cane and mixed hardwood forest did not differ in their DRP sequestration abilities. Ground water DRP concentrations were significantly reduced (14 percent) in the first 1.5 m of the buffers, and there was an overall 28 percent reduction in DRP concentration by 12 m from the field edge. The relatively low DRP reductions compared to other studies could be attributed to high DRP input levels, narrow (12 m) buffer lengths, and/or mature (28 to 48 year old) riparian vegetation.  相似文献   

9.
An experimental study was conducted in Tillamook, Oregon, USA, to quantify the effectiveness of edge-of-field vegetated buffers for reducing transport of fecal coliform bacteria (FCB) from agricultural fields amended with dairy cow manure. Installation of vegetated buffers on loamy soils dramatically reduced the bacterial contamination of runoff water from manure-treated pasturelands, but the size of the vegetated buffer was not an important determinant of bacterial removal efficiency. Only 10% of the runoff samples collected from treatment cells having vegetated buffers exhibited FCB concentrations >200 colony forming units (cfu)/100 mL (a common water quality standard value), and the median concentration for all cells containing vegetated buffers was only 6 cfu/100 mL. The presence of a vegetated buffer of any size, from 1 to 25 m, generally reduced the median FCB concentration in runoff by more than 99%. Results for FCB load calculations were similar. Our results suggest that where substantial FCB contamination of runoff occurs from manure-treated pasturelands, it might be disproportionately associated with specific field or management conditions, such as the presence of soils that exhibit low water infiltration and generate larger volumes of runoff or the absence of a vegetated buffer. Buffer size regulations that do not consider such differences might not be efficient or effective in reducing bacterial contamination of runoff.  相似文献   

10.
Riparian buffers are known to mitigate hydrologic losses of nutrients and other contaminants as they exit agricultural fields. The vegetation of riparian buffers can also trap atmospheric contaminants, and these pollutants can subsequently be delivered via rain to the riparian buffer floor. These processes, however, are poorly understood especially for pesticide residues. Therefore, we conducted a four‐year study examining stemflow and throughfall to a riparian buffer which was adjacent a cultured Zea mays field treated with atrazine and metolachlor. Stemflow is rain contacting the tree canopy traveling down smaller to larger branches and down the tree trunk, whereas throughfall is rain that may or may not contact leaves and branches and reaches the earth. Stemflow concentrations of the herbicides were larger than throughfall concentrations and accounted for 5‐15% of the atrazine and 6‐66% of the metolachlor depositional fluxes under the canopy. Larger depositional fluxes were measured when leaves were more fully emerged and temperatures and humidity were elevated. Rain collected outside the riparian buffer on the field side and on the back side revealed the trees trapped the herbicide residues. Herbicide loading to the riparian buffer stream was found to be linked to tree canopy deposition and subsequent washoff during rain events. These results indicate that in agricultural areas canopy washoff can be an important source of pesticides to surface waters.  相似文献   

11.
ABSTRACT: Riparian buffers are increasingly important as watershed management tools and are cost‐shared by programs such as Conservation Reserve that are part of the USDA Conservation Buffer Initiative. Riparian buffers as narrow as 4.6m (15ft) are eligible for cost‐share by USDA. The Riparian Ecosystem Management Model (REMM) provides a tool to judge water quality improvement by buffers and to set design criteria for nutrient and sediment load reduction. REMM was used for a Coastal Plain site to simulate 14 different buffers ranging from 4.6 m to 51.8 m (15 to 170 ft) with three different types of vegetation (hardwood trees, pine trees, and perennial grass) with two water and nutrient loads. The load cases were low sediment/low nutrient‐typical of a well managed agricultural field and low sediment/high nutrient‐typical of liquid manure application to perennial forage crops. Simulations showed that the minimum width buffer (4.6 m) was inadequate for control of nutrients under either load case. The minimum width buffer that is eligible for cost share assistance on a field with known water quality problems (10.7 m, 35 ft) was projected to achieve at least 50 percent reduction of N, P, and sediment in the load cases simulated.  相似文献   

12.
The scientific research literature is reviewed (i) for evidence of how much reduction in nonpoint source pollution can be achieved by installing buffers on crop land, (ii) to summarize important factors that can affect this response, and (iii) to identify remaining major information gaps that limit our ability to make probable estimates. This review is intended to clarify the current scientific foundation of the USDA and similar buffer programs designed in part for water pollution abatement and to highlight important research needs. At this time, research reports are lacking that quantify a change in pollutant amounts (concentration and/or load) in streams or lakes in response to converting portions of cropped land to buffers. Most evidence that such a change should occur is indirect, coming from site-scale studies of individual functions of buffers that act to retain pollutants from runoff: (1) reduce surface runoff from fields, (2) filter surface runoff from fields, (3) filter groundwater runoff from fields, (4) reduce bank erosion, and (5) filter stream water. The term filter is used here to encompass the range of specific processes that act to reduce pollutant amounts in runoff flow. A consensus of experimental research on functions of buffers clearly shows that they can substantially limit sediment runoff from fields, retain sediment and sediment-bound pollutants from surface runoff, and remove nitrate N from groundwater runoff. Less certain is the magnitude of these functions compared to the cultivated crop condition that buffers would replace within the context of buffer installation programs. Other evidence suggests that buffer installation can substantially reduce bank erosion sources of sediment under certain circumstances. Studies have yet to address the degree to which buffer installation can enhance channel processes that remove pollutants from stream flow. Mathematical models offer an alternative way to develop estimates for water quality changes in response to buffer installation. Numerous site conditions and buffer design factors have been identified that can determine the magnitude of each buffer function. Accurate models must be able to account for and integrate these functions and factors over whole watersheds. At this time, only pollutant runoff and surface filtration functions have been modeled to this extent. Capability is increasing as research data is produced, models become more comprehensive, and new techniques provide means to describe variable conditions across watersheds. A great deal of professional judgment is still required to extrapolate current knowledge of buffer functions into broadly accurate estimates of water pollution abatement in response to buffer installation on crop land. Much important research remains to be done to improve this capability. The greatest need is to produce direct quantitative evidence of this response. Such data would confirm the hypothesis and enable direct testing of watershed-scale prediction models as they become available. Further study of individual pollution control functions is also needed, particularly to generate comparative evidence for how much they can be manipulated through buffer installation and management.  相似文献   

13.
The retention of nutrients in narrow, vegetated riparian buffer strips (VBS) is uncertain and underlying processes are poorly understood. Evidence suggests that buffer soils are poor at retaining dissolved nutrients, especially phosphorus (P), necessitating management actions if P retention is not to be compromised. We sampled 19 buffer strips and adjacent arable field soils. Differences in nutrient retention between buffer and field soils were determined using a combined assay for release of dissolved P, N, and C forms and particulate P. We then explored these differences in relation to changes in soil bulk density (BD), moisture, organic matter by loss on ignition (OM), and altered microbial diversity using molecular fingerprinting (terminal restriction fragment length polymorphism [TRFLP]). Buffer soils had significantly greater soil OM (89% of sites), moisture content (95%), and water-soluble nutrient concentrations for dissolved organic C (80%), dissolved organic N (80%), dissolved organic P (55%), and soluble reactive P (70%). Buffer soils had consistently smaller bulk densities than field soils. Soil fine particle release was generally greater for field than buffer soils. Significantly smaller soil bulk density in buffer soils than in adjacent fields indicated increased porosity and infiltration in buffers. Bacterial, archaeal, and fungal communities showed altered diversity between the buffer and field soils, with significant relationships with soil BD, moisture, OM, and increased solubility of buffer nutrients. Current soil conditions in VBS appear to be leading to potentially enhanced nutrient leaching via increasing solubility of C, N, and P. Manipulating soil microbial conditions (by management of soil moisture, vegetation type, and cover) may provide options for increasing the buffer storage for key nutrients such as P without increasing leaching to adjacent streams.  相似文献   

14.
DeWalle, David R., 2010. Modeling Stream Shade: Riparian Buffer Height and Density as Important as Buffer Width. Journal of the American Water Resources Association (JAWRA) 46(2):323-333. DOI: 10.1111/j.1752-1688.2010.00423.x Abstract: A theoretical model was developed to explore impacts of varying buffer zone characteristics on shading of small streams using a path-length form of Beer’s law to represent the transmission of direct beam solar radiation through vegetation. Impacts of varying buffer zone height, width, and radiation extinction coefficients (surrogate for buffer density) on shading were determined for E-W and N-S stream azimuths in infinitely long stream sections at 40°N on the summer solstice. Increases in buffer width produced little additional shading beyond buffer widths of 6-7 m for E-W streams due to shifts in solar beam pathway from the sides to the tops of the buffers. Buffers on the north bank of E-W streams produced 30% of daily shade, while the south-bank buffer produced 70% of total daily shade. For N-S streams an optimum buffer width was less-clearly defined, but a buffer width of about 18-20 m produced about 85-90% of total predicted shade. The model results supported past field studies showing buffer widths of 9-11 m were sufficient for stream temperature control. Regardless of stream azimuth, increases in buffer height and extinction coefficient (buffer density) were found to substantially increase shading up to the maximum tree height and stand density likely encountered in the field. Model results suggest that at least 80% shade on small streams up to 6-m wide can be achieved in mid-latitudes with relatively narrow 12-m wide buffers, regardless of stream azimuth, as long as buffers are tall (≈30 m) and dense (leaf area index ≈6). Although wide buffers may be preferred to provide other benefits, results suggest that increasing buffer widths beyond about 12 m will have a limited effect on stream shade at mid-latitudes and that greater emphasis should be placed on the creation of dense, tall buffers to maximize stream shading.  相似文献   

15.
In contrast to spatial inequality, there are currently no methods for leveraging information on temporal inequality to improve conservation efficacy. The objective of this study was to use Lorenz curves to quantify temporal inequality in surface runoff and tile drainage, identify controls on nutrient loading in these flowpaths, and develop design flows for structural conservation practices. Surface runoff (n = 94 site‐years) and tile drainage (n = 90 site‐years) were monitored on 40 fields in Ohio. Results showed, on average, 80% of nitrate‐nitrogen, soluble reactive phosphorus (P), and total P loads occurred between 7 and 12 days per year in surface runoff and between 32 and 58 days per year in tile drainage. Similar temporal inequality between discharge and load provided evidence that loading was transport‐limited and highlighted the critical role hydrologic connectivity plays in nutrient delivery from tile‐drained fields. Design flow criterion for sizing structural practices based on load reduction goals was developed by combining Lorenz curves and flow duration curves. Comparing temporal inequality between fields and the Maumee River, the largest tributary to the western Lake Erie Basin, revealed challenges associated with achieving watershed load reduction goals with field‐scale conservation. In‐field (i.e., improved nutrient and water management), edge‐of‐field (i.e., structural practices), and instream practices will all be required to meet nutrient reduction goals from tile‐drained watersheds.  相似文献   

16.
Abstract: Being able to identify riparian sites that function better for nitrate removal from groundwater is critical to using efficiently the riparian zones for water quality management. For this purpose, managers need a method that is quick, inexpensive, and accurate enough to enable effective management decisions. This study assesses the precision and accuracy of a simple method using three ground water wells and one measurement date for determining nitrate removal characteristics of riparian buffer zones. The method is a scaled‐down version of a complex field research method that consists of a large network of wells and piezometers monitored monthly for over two years. Results using the simplified method were compared to those from the reference research method on a date‐by‐date basis on eight sites covering a wide range of hydrogeomorphic settings. The accuracy of the three‐well, 1 day measurement method was relatively good for assessing nitrate concentration depletion across riparian zones, but poor for assessing the distance necessary to achieve a 90% nitrate removal and for estimating water and nitrate fluxes compared to the reference method. The simplified three‐well method provides relatively better estimates of water and nitrate fluxes on sites where ground‐water flow is parallel to the water table through homogeneous aquifer material, but such conditions may not be geographically widespread. Despite limited overall accuracy, some parameters that are estimated using the simplified method may be useful to water resource managers. Nitrate depletion information may be used to assess the adequacy of existing buffers to achieve nitrate concentration goals for runoff. Estimates of field nitrate runoff and buffer removal fluxes may be adequate for prioritizing management toward sites where riparian buffers are likely to have greater impact on stream water quality.  相似文献   

17.
Qiu, Zeyuan, 2010. Prioritizing Agricultural Lands for Conservation Buffer Placement Using Multiple Criteria. Journal of the American Water Resources Association (JAWRA) 1-13. DOI: 10.1111/j.1752-1688.2010.00466.x Abstract: Although conservation buffers are multifunctional, the current conservation buffer planning strategies tend to use a single criterion, most frequently a hydrological or soil condition indicator, to guide conservation buffer placement. This study presents a watershed planning approach that prioritizes agricultural lands for conservation buffers based on multiple selection criteria and applies the approach to Raritan Basin in central New Jersey. The multiple selection criteria include soil erodibility, hydrological sensitivity, wildlife habitat, and impervious surface rate. These criteria capture the conservation buffers’ benefits in reducing soil erosion, controlling runoff generation, enhancing wildlife habitat, and mitigating stormwater impacts, respectively. An expert panel was used to identify and define the section criteria, review the measured values of those criteria, and develop the classification scales that assign the class score to each criterion. The prioritization is based on the summation of the criteria class scores. About one-third of agricultural lands are prioritized for conservation buffers in Raritan Basin. The total program cost of converting those prioritized agricultural lands to conservation buffers in Raritan Basin is estimated to be between $54.8 and 102.9 million depending on the composition of installed conservation buffer practices.  相似文献   

18.
Dosskey, Michael G. and Zeyuan Qiu, 2011. Comparison of Indexes for Prioritizing Placement of Water Quality Buffers in Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 47(4):662‐671. DOI: 10.1111/j.1752‐1688.2011.00532.x Abstract: Five physically based, spatially distributed, empirical indexes were compared for the degree to which they identified the same or different locations in watersheds where vegetative buffers would function better for reducing agricultural nonpoint source pollution. All five indexes were calculated on a 10 m × 10 m digital elevation grid on agricultural land in the 144‐km2 Neshanic River watershed in New Jersey. The indexes included the topography‐based Wetness Index (WI) and Topographic Index (TI) and three soil survey‐based indexes (sediment trapping efficiency [STE], water trapping efficiency [WTE], and groundwater interaction [GI]). Results showed that each index associated higher pollution risk and mitigation potential to a different part of the landscape. The WI and TI identified swales and riparian areas where runoff converges, whereas STE and WTE identified upland sites. The STE and WTE lack the fine scale of slope resolution and the accounting for convergent runoff patterns that can be important for properly locating buffers in some watersheds. The GI index indicates the existence of a shallow water table but the correspondence with WI‐ and TI‐identified sites was only modest. For watersheds where pollutant loading is generated by both saturation‐excess (emphasized by TI and WI) and infiltration‐excess processes (emphasized by STE and WTE), the indexes could be complementary. However, techniques would be needed for properly apportioning priority among sites identified by each index.  相似文献   

19.
ABSTRACT: Forest buffers adjacent to water bodies are widely prescribed in forest management to protect ecological functions of riparian systems. To date, buffers have been applied on the landscape uniformly without quantifying their effectiveness or the effects they have on landscape characteristics. Our objective was to quantify landscape characteristics (amount of edge and interior forest) when buffers were applied to water bodies in a 100 by 100 km area of northern Minnesota. We used a Landsat classified image in a geographic information system platform to apply two buffer widths ?28.5 m and 57 m — to water bodies, including nonforested wetlands, intermittent or perennial streams, and lakes. A total of 107,141 ha (18.3 percent) of the forest area was adjacent to and within 28.5 m of these water bodies, while 201,457 ha of forest was within 57 m, representing 34.4 percent of the total forest area. Imposing a 28.5 m buffer on water bodies increased the amount of edge and interior forest in the study area. When water bodies were buffered with a 57 m forest strip, we found a slight increase in forest edge from the current condition, and this buffer width resulted in the largest amount of interior forest. Interior forest increased with the 57 m buffer due to the density of water bodies in this region; adjacent water bodies coalesced when buffers were applied and formed isolated forest islands that contained forest interior habitat. Instead of wholesale application of set width riparian buffers, we suggest that ecological conditions of riparian areas be evaluated on a site level and that areas that currently provide important riparian conditions be maintained on the landscape with appropriate management practices.  相似文献   

20.
ABSTRACT: Riparian buffers have potential for reducing excess nutrient levels in surface water. Spatial variation in riparian buffer effectiveness is well recognized, yet researchers and managers still lack effective general tools for understanding the relevance of different hydrologic settings. We present several terrain‐based GIS models to predict spatial patterns of shallow, subsurface hydrologic flux and riparian hydrology. We then link predictions of riparian hydrology to patterns of nutrient export in order to demonstrate potential for augmenting the predictive power of land use/land cover (LU/LC) maps. Using predicted hydrology in addition to LUILC, we observed increases in the explained variation of nutrient exports from 290 sites across Lower Michigan. The results suggest that our hydrologic predictions relate more strongly to patterns of nutrient export than the presence or absence of wetland vegetation, and that in fact the influence of vegetative structure largely depends on its hydrologic context. Such GIS models are useful and complimentary tools for exploring the role of hydrologic routing in riparian ecosystem function and stream water quality. Modeling efforts that take a similar GIS approach to material transport might be used to further explore the causal implications of riparian buffers in heterogeneous watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号