首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 123 毫秒
1.
环境资讯     
<正>【环境新闻】环保部:"大气十条"目标有望全部实现今年是"大气十条"的收官之年,从目前情况看,设定的重要目标有望全部实现。据统计,国务院发布实施大气、水、土壤污染防治三大行动计划,污染防治成效显著。共完成燃煤电厂超低排放改造6.4亿k W,占煤电机组总装机容量的68%,减排燃煤电厂二氧化硫排放83%、氮氧化物50%、烟尘67%,建成世界最大的煤炭清洁发电体系。2017年1月至11月,全国338个地级及以上城市可吸入颗粒物(PM1)0平均浓度比2013年同期下降20.4%,京津冀、长三角、  相似文献   

2.
我国大气细颗粒物污染防治目标和控制措施研究   总被引:2,自引:1,他引:1       下载免费PDF全文
我国面临着严重的细颗粒物(PM2.5)污染问题,PM2.5对人体健康、能见度、气候变化、生态系统等均产生了不良影响。本文旨在提出我国PM2.5污染防治目标和控制措施,为从根本上改善空气质量提供科学依据。首先,本文提出了2020年和2030年我国PM2.5污染防治目标。其次,采用能源和污染排放技术模型,分情景预测了我国未来一次大气污染物排放量的变化趋势。基于情景预测结果和此前研究建立的一次污染物排放与PM2.5浓度间的非线性关系,确定了2020年—2030年与PM2.5浓度改善相适应的全国和重点区域大气污染物减排目标。最后,利用能源和污染排放技术模型,提出了实现大气污染物减排的技术措施和对策建议。研究表明,2030年全国二氧化硫、氮氧化物、一次PM2.5和挥发性有机物的排放量应分别比2012年至少削减51%、64%、53%和36%,氨排放量也要略有下降。对于污染严重的重点区域,必须采取更严格的控制力度。要实现上述减排,应加快能源结构调整,推进煤炭清洁高效集中可持续利用,建立"车-油-路"一体的移动源控制体系,并强化多源多污染物的末端控制。  相似文献   

3.
赖敏 《四川环境》2013,(Z1):119-128
新的火电厂大气排放标准的颁布,燃煤电厂汞的排放正式纳入控制标准。本文针对目前我国煤中汞含量及分布、燃煤电厂汞排放的特征、目前国内外燃煤汞排放控制技术的现状及发展趋势,结合我国燃煤电厂大气污染控制发展状况,提出适合我国国情的燃煤电厂汞控制技术措施的建议。  相似文献   

4.
安徽两淮地区(淮南和淮北)为华东地区最重要的能源基地,共有8个大型燃煤电厂,小型电厂数量众多,坑口电厂煤电的转换,污染物多残留原地,PM_(2.5)细颗粒物及有害元素大气排放尤需关注。两淮煤田煤中As、Hg、F、Be和U不富集,但燃煤电厂煤消费量大,而两淮地区燃煤电厂有害元素的大气排放量相关报道较少;基于该地区煤炭消费量、煤中元素含量和元素大气排放因子,建立了有害元素As、Hg、F、Be和U的大气排放清单,结果表明:2012年两淮地区燃煤电厂As、Hg、F、Be和U的大气排放量分别为0.31 t、1.93 t、727 t、0.08 t和0.18 t。  相似文献   

5.
大气环境约束下的中国煤炭消费总量控制研究   总被引:5,自引:5,他引:0       下载免费PDF全文
煤炭消费过程中排放的大气污染物已成为我国大气污染的重要来源。本文采用WRF-CAMx 空气质量模型定量分析了煤炭消费- 污染物排放- 空气质量之间的影响关系,基于情景分析方法,研究了2020 年、2030年空气质量改善需求对地区大气污染物排放总量与煤炭消费总量的约束作用。在此基础上,结合重点地区行业发展与能源供需等因素,提出各省煤炭消费总量控制目标与控煤对策建议。研究结果表明,要实现2020 年、2030 年空气质量改善阶段性目标,全国煤炭消费总量应分别控制在40.8 亿吨和37.7 亿吨左右,京津冀鲁豫等11 个重点省份2020 年煤炭消费量应控制在15.8 亿吨、2030 年控制在13.1 亿吨,全国煤炭清洁化利用水平需要在当前基础上大幅度提升。  相似文献   

6.
燃煤电厂在我国电力工业中占有很大的比重,其烟尘排放污染问题也尤其突出。大量燃煤烟尘的排放造成了严重的环境污染,特别是其中的细颗粒物PM2.5,能长期悬浮于大气中,对人类的健康造成了长期持续的危害,因此燃煤电厂PM2.5减排技术对于环境保护事业具有重要的意义和深远的影响,大力发展PM2.5减排技术与装备是电力行业大势所趋。  相似文献   

7.
国内外燃煤电厂汞排放控制技术比较分析   总被引:1,自引:0,他引:1  
概述了燃煤电厂汞排放的危害及汞迁移转化的规律;对国内外燃煤电厂的汞排放浓度情况进行了比较;指出汞排放控制技术的研究目前主要集中在燃烧前燃料脱汞、燃烧中脱汞和燃烧后烟气脱汞等方面;以美国运用较多的燃煤电厂炉前溴盐添加剂脱汞技术为案例进行分析,在煤里加入4ppm的溴,由于溴化添加剂产生的汞脱除率约64%,总汞控制率达80%,汞排放浓度约为2.6μg/m3;如果加入12ppm的溴,由于溴盐添加剂产生的汞脱除率约76%,总汞控制率可达88%,汞排放浓度约为1.56μg/m3。因此,溴盐添加剂脱汞技术对我国目前装备了SCR和湿法脱硫装置的燃煤电厂脱汞具有较大的参考价值。  相似文献   

8.
面对当前汞污染日益严峻的趋势,分析了燃煤锅炉烟气其它污染物(如二氧化硫、氮氧化物、颗粒物)控制设施及其运行情况,结合所燃用的煤质情况,介绍了燃煤锅炉烟气汞减排各种经济实用的方法,以及选择汞排放控制措施的“抉择树”。根据燃煤锅炉烟气实际情况,确定可采用的汞减排控制技术,必要时采取活性炭喷射脱汞技术(ACI),最大限度地提高协同除汞效果。同时提出了应注重燃煤残留物中汞的二次污染问题。  相似文献   

9.
针对燃煤火电机组汞排放特性,开展了汞测试技术研究,完成了3台典型超低排放机组汞排放特性现场测试,揭示了烟气汞排放特性及现有污染物控制装置对汞的协同脱除效果,对后续燃煤电厂汞污染物治理技术选择具有重要意义。  相似文献   

10.
林孜 《环境教育》2013,(12):84-84
北京,2013年12月2日:绿色和平与英国利兹大学研究团队最新发布的《雾霾真相——京津冀地区PM2.5污染解析及减排策略研究》显示:煤炭燃烧排放出的大气污染物是整个京津冀地区雾霾的最大根源。从行业来看,煤电、钢铁和水泥生产是京津冀首要的“污染”行业,其排放出的烟尘、二氧化硫、氮氧化物和挥发性有机物等是雾霾的主要来源。  相似文献   

11.
Carbon dioxide emission reduction scenarios for Finland are compared with respect to the radiative forcing they cause (heating power due to the absorption of infrared radiation in the atmosphere). Calculations are made with the REFUGE system model using three carbon cycle models to obtain an uncertainity band for the development of the atmospheric concentration. The future emissions from the use of fossil fuels in Finland are described with three scenarios. In the reference scenario (business-as-usual), the emissions and the radiative forcing they cause would grow continuously. In the scenario of moderate emission reduction, the emissions would decrease annually by 1% from the first half of the next century. The radiative forcing would hardly decrease during the next century, however. In the scenario of strict emission reductions, the emissions are assumed to decrease annually by 3%, but the forcing would not decrease until approximately from the middle of the next century depending on the model used. Still, in the year 2100 the forcing would be considerably higher than the forcing in 1990. Due to the slow removal of CO2 from the atmosphere by the oceans, it is difficult to reach a decreasing radiative forcing only by limiting fossil CO2 emissions. The CO2 emissions from fossil fuels in Finland contribute to the global emissions presently by about 0.2%. The relative contribution of Finnish CO2 emissions from fossil fuels to the global forcing due to CO2 emissions is presently somewhat less than 0.2% due to relatively smaller emissions in the past. The impact of the nonlinearity of both CO2 removal from the atmosphere and of CO2 absorption of infrared radiation on the results is discussed.  相似文献   

12.
This paper evaluates the causes of the 23% decline in 2030 US greenhouse gas emissions forecasts between 2007 and 2011. Dynamic regression modeling predicts that the Great Recession contributed to about 67% of the 2008–2009 emissions decline, but then fell to about an 18% share for the 2030 emissions forecast. An analysis of electricity generation forecasts show that switching from coal to gas contributed only 6% to the total 2030 decline. In contrast, regulatory impact assessments and policy analysis showed that state and federal policies were responsible for 46% of the 2030 decline in emissions.  相似文献   

13.
Better insight in the possible range of future N?O emissions can help to construct mitigation and adaptation strategies and to adapt land use planning and management to climate objectives. The Dutch fen meadow landscape is a hotspot of N?O emission due to high nitrogen inputs combined with moist peat soils due to land use change. Socio-economic developments in the area are expected to have major impacts on N?O emission. The goals of this study are to estimate changes in N?O emissions for the period 2006-2040 under three different scenarios for the Dutch fen meadow landscape (rural production, rural fragmentation, and rural multifunctionality) and to quantify the share of different emission sources. Three scenarios were constructed and quantified based on the Story-And-Simulation approach. The rural production and the rural fragmentation scenarios are characterized by globalization and a market-oriented economy; in the rural production scenario dairy farming has a strong competitive position in the study region, while under the rural fragmentation scenario agriculture is declining. Under the rural multifunctionality scenario, the global context is characterized by regionalization and stronger regulation toward environmental issues. The N?O emission decreased between 2006 and 2040 under all scenarios. Under the rural production scenario, the N?O emission decreased by 7%. Due to measures to limit peat mineralization and policies to reduce agricultural emissions, the rural multifunctionality scenario showed the largest decrease in N?O emissions (44%). Under the rural fragmentation scenario, in which the dairy farming sector is diminished, the emission decreased by 33%. Compared to other uncertainties involved in N?O emission estimates, the uncertainty due to possible future land use change is relatively large and assuming a constant emission with time is therefore not appropriate.  相似文献   

14.
Recent measurements at different locations suggest that the emission of mercury from soils may play a more pronounced role in the global mercury cycle as suggested by global emission inventories and global mercury cycling models. For up scaling and modelling of mercury emissions from soils a comprehensive assessment of the processes controlling the emission of mercury from soils is imperative. We have developed a laboratory flux measurement system (LFMS) to study the effect of major environmental variables on the emission of mercury under controlled conditions. We have investigated the effects of turbulent mixing, soil temperature and solar radiation on the emission of mercury from soils. The emission of mercury from soils is constant over time under constant experimental conditions. The response of the mercury emission flux to variations of the atmospheric transfer parameters such as turbulence requires a rapid adjustment of the equilibrium that controls the Hg(o) concentration in the soil air. It has been shown that the light-induced flux is independent of the soil temperature and shows a strong spectral response to UV-B.  相似文献   

15.
While the energy sector is the largest global contributor to greenhouse gas (GHG) emissions, the agriculture, forestry, and other land use (AFOLU) sector account for up to 80% of GHG emissions in the least developed countries (LDCs). Despite this, the nationally determined contributions (NDCs) of LDCs, including Nepal, focus primarily on climate mitigation in the energy sector. This paper introduces green growth—a way to foster economic growth while ensuring access to resources and environmental services—as an approach to improving climate policy coherence across sectors. Using Nepal as a case country, this study models the anticipated changes in resource use and GHG emissions between 2015 and 2030, that would result from implementing climate mitigation actions in Nepal's NDC. The model uses four different scenarios. They link NDC and policies across economic sectors and offer policy insights regarding (1) energy losses that could cost up to 10% of gross domestic product (GDP) by 2030, (2) protection of forest resources by reducing the use of biomass fuels from 465 million gigajoules (GJ) in 2015 to 195 million GJ in 2030, and (3) a significant reduction in GHG emissions by 2030 relative to the business-as-usual (BAU) case by greater use of electricity from hydropower rather than biomass. These policy insights are significant for Nepal and other LDCs as they seek an energy transition towards using more renewable energy and electricity.  相似文献   

16.

As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options. The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO2 emissions in 1996–1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO2 emissions for the year 2000 is 3% of the CO2 emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%–6% of the 1990 level.

  相似文献   

17.
在全球贸易体系中,美国是中国大气汞排放的主要外部消费驱动力之一。现有研究多核算国际贸易驱动的大气汞排放,识别主要的贸易驱动关系,缺乏中美贸易模式变化对中国大气汞排放的影响分析。本文基于环境扩展型投入产出模型和结构分解分析方法,计算了1997—2017年中美贸易驱动的中国大气汞排放量,并深入分析了贸易相关的社会经济因素对中国大气汞排放变化的相对贡献。研究结果表明:1997—2007年,中美贸易驱动的中国大气汞排放从13.5 t增至32.8 t,2007年后开始回落,2017年回落至13.6 t。贸易规模扩大是推动大气汞排放增加的最主要因素(62.6 t),排放强度降低是大气汞排放减少的最大驱动因素(-67.0 t)。生产技术水平变化和贸易结构变化的贡献相对较小,近年来逐渐起到促进大气汞排放减少的作用,但其贡献不稳定。根据研究结果,提出了加快产业创新升级,优化、稳定贸易结构,提升产品竞争力等建议。  相似文献   

18.
Mercury, a toxic metal known to have several deleterious affects on human health, has been one of the principal contaminants of concern in the Great Lakes basin. There are numerous anthropogenic sources of mercury to the Great Lakes area. Combustion of coal, smelting of non ferrous metals, and incineration of municipal and medical waste are major sources of mercury emissions in the region. In addition to North American anthropogenic emissions, global atmospheric emissions also significantly contribute to the deposition of mercury in the Great Lakes basin. Both the USA and Canada have agreed to reduce human exposure to mercury in the Great Lakes basin and have significantly curtailed mercury load to this region through individual and joint efforts. However, many important mercury sources, such as coal-fired power plants, still exist in the vicinity of the Great Lakes. More serious actions to drastically reduce mercury sources by employing alternative energy sources, restricting mercury trade and banning various mercury containing consumer products, such as dental amalgam are as essential as cleaning up the historical deposits of mercury in the basin. A strong political will and mass momentum are crucial for efficient mercury management. International cooperation is equally important. In the present paper, we have analyzed existing policies in respective jurisdictions to reduce mercury concentration in the Great Lakes environment. A brief review of the sources, occurrence in the Great Lakes, and the health effects of mercury is also included.  相似文献   

19.
A mercury emission model was developed to estimate non-point source mercury (Hg) emissions occurring over the year from the Idrijca River catchment, draining the area of the world's second largest Hg mine in Idrija, Slovenia. Site-specific empirical correlations between the measured Hg emission fluxes and the parameters controlling the emission (comprising substrate Hg content, soil temperature, solar radiation and soil moisture) were incorporated into the mercury emission model developed using Geographic Information System technology. In this way, the spatial distribution and significance of the most polluted sites that need to be properly managed was assessed. The modelling results revealed that annually approximately 51 kg of mercury are emitted from contaminated surfaces in the catchment (640 km(2)), highlighting that emission from contaminated surfaces contributes significantly to the elevated Hg concentrations in the ambient air of the region. Very variable meteorological conditions in the modelling domain throughout the year resulted in the high seasonal and spatial variations of mercury emission fluxes observed. Moreover, it was found that mercury emission fluxes from surfaces in the Idrija region are 3-4 fold higher than the values commonly used in models representing emissions from global mercuriferous belts. Sensitivity and model uncertainty analysis indicated the importance of knowing not only the amount but also the type of mercury species and their binding in soils in future model development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号