首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A new contact oxidation filtration separation integrated bioreactor (CFBR) was used to treat municipal wastewater. The CFBR was made up of a biofilm reactor (the upper part of the CFBR) and a gravitational filtration bed (the lower part of the CFBR). Polyacrylonitrile balls (50 mm diameter, 237 m2/m3 specific surface, 90% porosity, and 50.2% packing rate) were filled into the biofilm reactor as biofilm attaching materials and anthracite coal (particle size 1–2 mm, packing density 0.947 g/cm3, non-uniform coefficient (K80 = d80/d10) < 2.0) was placed into the gravitational filtration bed as filter media. At an organic volumetric loading rate of 2.4 kg COD/(m3 d) and an initial filtration velocity of 5 m/h in the CFBR, the average removal efficiencies of COD, ammonia nitrogen, total nitrogen and turbidity were 90.6%, 81.4%, 64.6% and 96.7% respectively, but the treatment process seemed not to be effective in phosphorus removal. The average removal efficiency of total phosphorus was 60.1%. Additionally, the power consumption of the CFBR was less than 0.15 kWh/m3 of wastewater treated, and less than 1.5 kWh/kg BOD5 removal.  相似文献   

2.
The aim of this work was to study the mineralization of wastewater effluent from an integrated-gasification combined-cycle (IGCC) power station sited in Spain to meet the requirements of future environmental legislation. This study was done in a pilot plant using a homogeneous photo-Fenton oxidation process with continuous addition of H2O2 and air to the system.The mineralization process was found to follow pseudo-first-order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The NNs model reproduced the experimental data to within a 90% confidence level and allowed the simulation of the process for any values of the parameters within the experimental range studied. At the optimum conditions (H2O2 flow rate = 120 mL/h, [Fe(II)] = 7.6 mg/L, pH = 3.75 and air flow rate = 1 m3/h), a 90% mineralization was achieved in 150 min.Determination of the hydrogen peroxide consumed and remaining in the water revealed that 1.2 mol of H2O2 was consumed per each mol of total organic carbon removed from solution. This result confirmed that an excess of dissolved H2O2 was needed to achieve high mineralization rates, so continuous addition of peroxide is recommended for industrial application of this process.Air flow slightly improved the mineralization rate due to the formation of peroxo-organic radicals which enhanced the oxidation process.  相似文献   

3.
In this study, the distribution of airborne manganese (Mn) bound with particulate matters (PM) was investigated using data sets collected from 15 major cities in Korea over a 16-year time span (1991–2006). The mean Mn concentration measured from all the major cities in Korea throughout the entire study period was 71 ng m?3, while the annual mean values of different cities ranged from 10.5 ng m?3 in Yeosu (2003) to 615 ng m?3 in Wonju (2006). The Mn levels were considerably larger in industrialized areas than in other land-use types. The Mn concentrations in the major industrial cities of Pohang, Incheon, and Ansan averaged 255, 98.2, and 84.6 ng m?3, respectively; these values were far higher than those measured typically at most cities, e.g., 20–60 ng m?3. Seasonal patterns characterized by the peak occurrence in spring and the noticeable drop in summer reflected the effects of the massive PM inflow from China (spring) and effective washout by summer monsoon in East Asia, respectively. Examination of Mn data over a long-term period indicated that the temporal trends of Mn seen in most cities were fairly constant through time since the 1990s, although some abnormalities were observed in cities of strong man-made activities (e.g., Pohang and Wonju). In light of the severity of airborne Mn pollution in many urban areas, it is desirable to establish an abatement strategy that can help effectively reduce Mn levels.  相似文献   

4.
Two sets of experiments on typical Class G well cement were carried out in the laboratory to understand better the potential processes involved in well leakage in the presence of CO2. In the first set, good-quality cement samples of permeability in the order of 0.1 μD (10?19 m2) were subjected to 90 days of flow through with CO2-saturated brine at conditions of pressure, temperature and water salinity characteristic of a typical geological sequestration zone. Cement permeability dropped rapidly at the beginning of the experiment and remained almost constant thereafter, most likely mainly as a result of CO2 exsolution from the saturated brine due to the pressure drop along the flow path which led to multi-phase flow, relative-permeability effects and the observed reduction in permeability. These processes are identical to those which would occur in the field as well if the cement sheath in the wellbore annulus is of good quality. The second set of experiments, carried out also at in situ conditions and using ethane rather than CO2 to eliminate any possible geochemical effects, assessed the effect of annular spaces between wellbore casing and cement, and of radial cracks in cement on the effective permeability of the casing-cement assemblage. The results show that, if both the cement and the bond are of good quality, the effective permeability of the assemblage is extremely low (in the order of 1 nD, or 10?21 m2). The presence of an annular gap and/or cracks in the order of 0.01–0.3 mm in aperture leads to a significant increase in effective permeability, which reaches values in the range of 0.1–1 mD (10?15 m2). The results of both sets of experiments suggest that good cement and good bonding with casing and the surrounding rock will likely constitute a good and reliable barrier to the upward flow of CO2 and/or CO2-saturated brine. The presence of mechanical defects such as gaps in bonding between the casing or the formation, or cracks in the cement annulus itself, leads to flow paths with significant effective permeability. This indicates that the external and internal interfaces of cements in wells would most probably constitute the main flow pathways for fluids leakage in wellbores, including both gaseous/supercritical phase CO2 and CO2-saturated brine.  相似文献   

5.
Mathematical tools are needed to screen out sites where Joule–Thomson cooling is a prohibitive factor for CO2 geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO2 injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s?1 (0.1 MT yr?1) into moderately warm (>40 °C) and permeable formations (>10?14 m2 (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi).  相似文献   

6.
Based on the method of material flow analysis (MFA), a static model of Austrian aluminum (Al) flows in 2010 was developed. Extensive data research on Al production, consumption, trade and waste management was conducted and resulted in a detailed model of national Al resources. Data uncertainty was considered in the model based on the application of a rigorous concept for data quality assessment. The model results indicated that the growth of the Austrian “in-use” Al stock amounts to 11 ± 3.1 kg yr−1 cap−1. The total “in-use” Al stock was determined using a bottom-up approach, which produced an estimate of 260 kg Al cap−1. Approximately 7 ± 1 kg of Al yr−1 cap−1 of old scrap was generated in 2010, of which 20% was not recovered because of losses in waste management processes. Quantitatively, approximately 40% of the total scrap input to secondary Al production originated from net imports, highlighting the import dependency of Austrian Al refiners and remelters. Uncertainties in the calculation of recycling indicators for the Austrian Al system with high shares of foreign scrap trade were exemplarily illustrated for the old scrap ratio (OSR) in secondary Al production, resulting in a possible range of OSRs between 0 and 66%. Overall, the detailed MFA in this study provides a basis to identify resource potentials as well as resource losses in the national Al system, and it will serve as a starting point for a dynamic Al model to be developed in the future.  相似文献   

7.
The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25–9.14 and 1.5–6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95–96%), BOD (97–98%) and TSS (98–99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8–4.2 kg COD/m3 day, 2.5–4.6 kg TSS/m3 day and 22,000–25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit.  相似文献   

8.
This paper presents results from a gate-to-gate analysis of the energy balance, greenhouse gas (GHG) emissions and economic efficiency of biochar production from palm oil empty fruit bunches (EFB). The analysis is based on data obtained from EFB combustion in a slow pyrolysis plant in Selangor, Malaysia. The outputs of the slow pyrolysis plant are biochar, syngas, bio-oil and water vapor. The net energy yield of the biochar produced in the Selangor plant is 11.47 MJ kg−1 EFB. The energy content of the biochar produced is higher than the energy required for producing the biochar, i.e. the energy balance of biochar production is positive. The combustion of EFB using diesel fuel has the largest energy demand of 2.31 MJ kg−1 EFB in the pyrolysis process. Comparatively smaller amounts of energy are required as electricity (0.39 MJ kg−1 EFB) and for transportation of biochar to the warehouse and the field (0.13 MJ kg−1 EFB). The net greenhouse gas emissions of the studied biochar production account for 0.046 kg CO2-equiv. kg−1 EFB yr−1 without considering fertilizer substitution effects and carbon accumulation from biochar in the soil. The studied biochar production is profitable where biochar can be sold for at least 533 US-$ t−1. Potential measures for improvement are discussed, including higher productivity of biochar production, reduced energy consumption and efficient use of the byproducts from the slow pyrolysis.  相似文献   

9.
To reduce the consumption of freshwater in the laundry industry, a new trend of closing the water cycle has resulted in the reuse/recycling of water. In this study, the performance of a full-scale submerged aerobic membrane bioreactor (9 m3) used to treat/reuse industrial laundry wastewater was examined over a period of 288 days. The turbidity and total solids (TS) were reduced by 99%, and the chemical oxygen demand (COD) effluent removal efficiencies were between 70% and 99%. The levels of COD removed by the membrane were significantly greater than the levels of biodegraded COD. This enabled the bioreactor to sustain COD levels that were below 100 mg/L, even during periods of low wastewater biodegradation due to bioreactor sludge. An economic evaluation of the membrane bioreactor (MBR) system showed a savings of 1.13 € per 1 m3 of water. The payback period for this system is approximately 6 years. The energy and maintenance costs represent only 5% of the total cost of the MBR system.  相似文献   

10.
Use of anionic polyacrylamide (PAM) to control phosphorus (P) losses from a Chinese purple soil was studied in both a laboratory soil column experiment and a field plot experiment on a steep slope (27%). Treatments in the column study were a control, and PAM mixed uniformly into the soil at rates of 0.02, 0.05, 0.08, 0.10, and 0.20%. We found that PAM had an important inhibitory effect on vertical P transport in the soil columns, with the 0.20% PAM treatment having the greatest significant reduction in leachate soluble P concentrations and losses resulting from nine leaching periods. Field experiments were conducted on 5 m wide by 21 m long natural rainfall plots, that allowed collection of both surface runoff and subsurface drainage water. Wheat was planted and grown on all plots with typical fertilizer applied. Treatments included a control, dry PAM at 3.9 kg ha?1, dry PAM at 3.9 kg ha?1 applied together with lime (CaCO3 at 4.9 t ha?1), and dry PAM at 3.9 kg ha?1 applied together with gypsum (CaSO4·2H2O at 4 t ha?1). Results from the field plot experiment in which 5 rainfall events resulted in measurable runoff and leachate showed that all PAM treatments significantly reduced runoff volume and total P losses in surface runoff compared to the control. The PAM treatments also all significantly reduced water volume leached to the tile drain. However, total P losses in the leachate water were not significantly different due to the treatments, perhaps due to the low PAM soil surface application rate and/or high experimental variability. The PAM alone treatment resulted in the greatest wheat growth as indicated by the plant growth indexes of wheat plant height, leaf length, leaf width, grain number per head, and dried grain mass. Growth indexes of the PAM with Calcium treatments were significantly lesser. These results indicate that the selection and use of soil amendments need to be carefully determined based upon the most important management goal at a particular site (runoff/nutrient loss control, enhanced plant growth, or a combination).  相似文献   

11.
This paper explores the integration and evaluation of a power plant with a CaO-based CO2 capture system. There is a great amount of recoverable heat in the CaO-based CO2 capture process. Five cases for the possible integration of a 600 MW power plant with CaO-based CO2 capture process are considered in this paper. When the system is configured so that recovered heat is used to replace part of the boiler heat load (Case 2), modelling not only shows that this is the system recovering the most heat of 1008.8 MW but also results in the system with the lowest net power output of 446 MW and the second lowest of efficiency of 34.1%. It is indicated that system performance depends both on the amount of heat recovery and the type of heat utilization. When the system is configured so that a 400 MW power plant is built using the recovered heat (Case 4), modelling shows that this is the system with the most net power output of 846 MW, the highest efficiency of 36.8%, the lowest cost of electricity of 54.3 €/MWh and the lowest cost of CO2 avoided of 28.9 €/tCO2. This new built steam cycle will not affect the operation of the reference plant which vents its CO2 to the atmosphere, highly reducing the connection between the CO2 capture process and the reference plant which vents its CO2 to the atmosphere. The average cost of electricity and the cost of CO2 avoided of the five cases are about 58.9 €/kWh and 35.9 €/tCO2, respectively.  相似文献   

12.
At Sleipner, CO2 is being separated from natural gas and injected into an underground saline aquifer for environmental purposes. Uncertainty in the aquifer temperature leads to uncertainty in the in situ density of CO2. In this study, gravity measurements were made over the injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order to constrain the in situ CO2 density. The gravity measurements have a repeatability of 4.3 μGal for 2003 and 3.5 μGal for 2005. The resulting time-lapse uncertainty is 5.3 μGal. Unexpected benchmark motions due to local sediment scouring contribute to the uncertainty. Forward gravity models are calculated based on both 3D seismic data and reservoir simulation models. The time-lapse gravity observations best fit a high temperature forward model based on the time-lapse 3D seismics, suggesting that the average in situ CO2 density is about to 530 kg/m3. Uncertainty in determining the average density is estimated to be ±65 kg/m3 (95% confidence), however, this does not include uncertainties in the modeling. Additional seismic surveys and future gravity measurements will put better constraints on the CO2 density and continue to map out the CO2 flow.  相似文献   

13.
Large scale rainwater harvesting (LSRWH) is a promising alternative to address security and flood issues in urban areas. The development and planning of a LSRWH for an eco-community involves comprehensive site-planning, systems planning and design, which includes the rainwater source collection (roof) to the storage tank, the distribution and allocation system. This paper describes a new technique for designing a LSRWH for a community of 200 houses with an average of 4 persons per house and an average total daily water demand of 160 m3. It was found that the optimal size storage tank for a 20,000 m2 roof area is 160 m3 with a 60% reliability. The application of this model to the case study revealed a significant water saving up to 58% .The total cost for this system is 443,861 USD over a life-span of 25 years.  相似文献   

14.
The advanced zero emissions power plant (AZEP) project addresses the development of a novel “zero emissions,” gas turbine-based, power generation process to reduce local and global CO2 emissions in a cost-effective way.The key element in AZEP is an integrated MCM-reactor, in which (a) O2 is separated from air by means of a mixed-conducting membrane (MCM), (b) combustion of natural gas occurs in an N2-free environment and (c) the heat of combustion is transferred to air by heat exchange.This paper focuses on the development and testing of the ceramic components of the MCM-reactor (air separation membrane and heat exchangers). For compactness and manufacturability, a module design based on extruded square channel monoliths has been chosen. The manifold design enables gas distribution in a checkerboard pattern. Modules with contact area of >500 m2/m3 have been produced.Results from testing of the modules under close to realistic process conditions agree with model predictions. Extrapolation to AZEP process conditions gives an oxygen production rate of around 37 mol O2/(m3 s), or 15 MW/m3 power density (per net MCM volume). These values correspond to project targets and confirm the feasibility of the AZEP concept.  相似文献   

15.
The objective of this work was to assess the effect of agitation rate and impeller type in two mechanically stirred sequencing batch reactors: one containing granulated biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam (denominated AnSBBR). Each configuration, with total volume of 1 m3, treated 0.65 m3 sanitary wastewater at ambient temperature in 8-h cycles. Three impeller types were assessed for each reactor configuration: flat-blade turbine impeller, 45°-inclined-blade turbine impeller and helix impeller, as well as two agitation rates: 40 and 80 rpm, resulting in a combination of six experimental conditions. In addition, the ASBR was also operated at 20 rpm with a flat-blade turbine impeller and the AnSBBR was operated with a draft tube and helix impeller at 80 and 120 rpm. To quantify how impeller type and agitation rate relate to substrate consumption rate, results obtained during monitoring at the end of the cycle, as well as the time profiles during a cycle were analyzed. Increasing agitation rate from 40 rpm to 80 rpm in the AnSBBR improved substrate consumption rate whereas in the ASBR this increase destabilized the system, likely due to granule rupture caused by the higher agitation. The AnSBBR showed highest solids and substrate removal, highest kinetic constant and highest alkalinity production when using a helix impeller, 80 rpm, and no draft tube. The best condition for the ASBR was achieved with a flat-blade turbine impeller at 20 rpm. The presence of the draft tube in the AnSBBR did not show significant improvement in reactor efficiency. Furthermore, power consumption studies in these pilot scale reactors showed that power transfer required to improve mass transfer might be technically and economically feasible.  相似文献   

16.
In 2002, about 17.1 million bales of cotton were ginned in the United States and the estimated cotton gin waste was 2.25 × 109 kg. The disposal of cotton gin waste (CGW) is a significant problem in the cotton ginning industry, but CGW could be potentially used as feedstock for bioethanol. Freshly discharged CGW and stored CGW were characterized for storage stability and potential for ethanol production by determining their summative compositions. The bulk densities of the fresh wet and dry CGW were 210.2 ± 59.9 kg m−3 and 183.3 ± 52.2 kg m−3, respectively. After six months of storage the volume of piles A, B, and C decreased by 38.7%, 41.5%, and 33.3%, respectively, relative to the volume of the pile at the start of the storage. The ash content of the CGW was very high ranging from 10% to 21% and the acid-insoluble fraction was high (21–24%). The total carbohydrate content was very low and ranged from 34% to 49%. After three months storage, chemical compositional analysis showed the loss of total carbohydrates was minimal but after six months, the losses were as high as 25%. This loss of carbohydrates suggests that under open storage conditions, the feedstock must be processed within three months to reduce ethanol yield losses.  相似文献   

17.
Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mg L?1 was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test.When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 A m?2, NaCl of 1000 mg L?1, and pH0 of 7. However, the decolorized solution showed high toxicity (100% light inhibition).For fly ash adsorption, a high dose of fly ash (>20,000 mg L?1) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well.In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mg L?1 fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.  相似文献   

18.
19.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

20.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号