首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
人工湿地中氮元素的脱除主要依靠多种微生物的联合作用,因此氮代谢微生物的和谐共存成为人工湿地高效脱氮的基础。本文分析回顾了氨氧化细菌、亚硝酸盐氧化菌、反硝化细菌及厌氧氨氧化菌等主要氮代谢微生物的共存策略及反应机理。  相似文献   

2.
表面流人工湿地磷循环生态动力学模型及实现方法   总被引:6,自引:2,他引:4  
张军  周琪 《四川环境》2004,23(1):88-91
人工湿地做为一种高效低耗的新型污水处理工艺日益为人们所关注,特别是表面流人工湿地所特有的区域生态效益和脱氮除磷效果,但其污染物去除的内在机制并不为人们所完全掌握。本文详细地介绍了表面流人工湿地磷循环生态动力学模型的设计思想、具体结构、数学模式和实现方法,并对生物生长、死亡和土壤作用模块的各种不同实现方法傲了深入细致地分析探讨。结果表明人工湿地生态动力学模型由于假设歧义、实现方法不统一、模型参数测定手段的缺乏等因素的影响,导致其模拟结果的误差偏大,在表面流人工湿地多介质环境条件下多形态磷循环机理和多学科交叉研究方面还需要进行更深入、细致的工作,来对模型不断完善以推动对人工湿地污水处理工艺的完全掌握和科学应用。  相似文献   

3.
从短程硝化反硝化机理和目前国内外在短程硝化生物脱氮技术方面的进展入手;介绍了影响短程硝化的因素,剖析了潜流型人工湿地系统实现短程硝化的可能性和可行性;最后展望了湿地系统作为生态处理方法的发展方向.  相似文献   

4.
文章以太湖流域污水处理设施尾水为例,研究出"水质水量调节—垂直潜流人工湿地—水平潜流人工湿地"的尾水深度脱氮除磷工艺,在人工湿地中使用铝污泥复合填料,研究成果可为太湖流域污水处理设施的深度处理及提标改造提供关键技术支持。  相似文献   

5.
人工湿地污水处理系统工艺设计研究   总被引:15,自引:1,他引:15  
赵桂瑜  杨永兴  杨长明 《四川环境》2005,24(6):24-27,35
本文阐述了人工湿地污水处理系统工艺设计的主要内容及存在的若干问题,提出了开展人工湿地工艺设计研究的一些设想。人工湿地工艺设计研究包括人工湿地基质构建、植物群落构建和人工湿地构造与工程参数三个方面。目前,由于在污染物净化机理、系统水力学和污染物降解动力学等方面认识不足,制约了人工湿地工艺设计水平的提高,因此,深入研究污染物净化机理、开展人工湿地基质与植物筛选与组合研究、创建适合植物生长的人工生境、优化水力学模型和污染物降解动力学模型.将有利于提高人工湿地工艺设计水平。  相似文献   

6.
人工湿地中不同的污染物的去除机理不同,其去污的影响因素也不同.在国内,人工湿地对氮磷去除的研究较多,对新型有机污染物的研究很少,在很多机理上还属空白.总结了近年来国内外湿地对有机污染物去除的研究进展情况以及不同湿地类型对去除率的影响.系统的分析了有关湿地植物,基质,微生物对于有机污染物的去除作用机理,提出了存在问题并对今后湿地去除有机污染物的研究进行了展望.  相似文献   

7.
氮、磷在湿地基质中降解的机理研究   总被引:1,自引:0,他引:1  
夏宏生  向欣 《四川环境》2012,31(2):78-84
湿地基质被看成是人工湿地处理污水的核心部分,通过科学实验,文章分析了人工湿地运行中氮、磷在沿程方向和纵向的基质中的分布,重点研究湿地基质对于氮、磷的净化作用,有利于进一步理清湿地基质降解氮、磷的机理。  相似文献   

8.
针对农村生活污水污染问题已成为影响我国农村水环境的主要因素以及目前黑灰分离收集处理与现状不相符合,本文对崇明县某村的污水排放特征以及水量水质进行调研,并对硝化预处理系统结合人工湿地反硝化以及脱氮预处理结合人工湿地深度处理两种运行模式进行了深入探讨并分析了其去除机理,结果显示,硝化预处理系统结合人工湿地反硝化由于后续反硝化需要投加大量碳源从经济管理方面而言变得不可行;脱氮预处理结合人工湿地深度处理在预处理系统以进水3h、曝气2h、沉淀0.5h、排水0.5h、气水比40∶1的模式运行、人工湿地水力停留时间为48h条件下出水可满足《城镇污水处理厂污染物排放标准》(GB18918-2002)的二级要求,且因氨氮指标的降低大幅缩短了人工湿地的水力停留时间而减小占地面积。  相似文献   

9.
从潜流式人工湿地设计谈提高氮去除率方法的途径   总被引:2,自引:0,他引:2  
从相关文献与实际工程来看,潜流式人工湿地对含氮污染物的去除效果与含碳污染物的去除比相对较弱。参考国内外大量文献资料,根据潜流式人工湿地的常规工艺和脱氮机理,本文总结并提出了一些提高污水氮去除率的方法。指出应根据具体的情况选择合适的植物和基质、通过工程措施和工艺组合、优化工艺设计及其他一些方法来创造脱氮所需环境,从而达到提高潜流式人工湿地氮去除率的目的。  相似文献   

10.
刘西茹 《四川环境》2014,(1):144-149
人工湿地系统具有高效、节能、基建和运行费用低、操作与维护简单等优点,是一种高效的污水生态处理技术,其去除机理错综复杂。本文综述了人工湿地的系统构造、分类和净化机理,并通过其影响因素的分析,提出了人工湿地污水处理系统在设计、建设和运行管理中应注意的问题。  相似文献   

11.
Improved understanding of the importance of different surfaces in supporting attached nitrifying and denitrifying bacteria is essential if we are to optimize the N removal capacity of treatment wetlands. The aim of this study was therefore to examine the nitrifying and denitrifying capacity of different surfaces in a constructed treatment wetland and to assess the relative importance of these surfaces for overall N removal in the wetland. Intact sediment cores, old pine and spruce twigs, shoots of Eurasian watermilfoil (Myriophyllum spicatum L.), and filamentous macro-algae were collected in July and November 1999 in two basins of the wetland system. One of the basins had been constructed on land that contained lots of wood debris, particularly twigs of coniferous trees. Potential nitrification was measured using the isotope-dilution technique, and potential denitrification was determined using the acetylene-inhibition technique in laboratory microcosm incubations. Nitrification rates were highest on the twigs. These rates were three and 100 times higher than in the sediment and on Eurasian watermilfoil, respectively. Potential denitrification rates were highest in the sediment. These rates were three times higher than on the twigs and 40 times higher than on Eurasian watermilfoil. The distribution of denitrifying bacteria was most likely due to the availability of organic material, with higher denitrification rates in the sediment than on surfaces in the water column. Our results indicate that denitrification, and particularly nitrification, in treatment wetlands could be significantly increased by addition of surfaces such as twigs.  相似文献   

12.
Denitrification in alluvial wetlands in an urban landscape   总被引:1,自引:0,他引:1  
Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.  相似文献   

13.
This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates.  相似文献   

14.
In pond and wetland systems for wastewater treatment, plants are often thought to enhance the removal of ammonium and nitrogen through the activities of root-associated bacteria. In this study, we examined the role of plant roots in an aerated pond system with floating plants designed to treat high-strength septage wastewater. We performed both laboratory and full-scale experiments to test the effect of different plant root to septage ratios on nitrification and denitrification, and measured the abundances of nitrifying bacteria associated with roots and septage particulates. Root-associated nitrifying bacteria did not play a significant role in ammonium and total nitrogen removal. Investigations of nitrifier populations showed that only 10% were associated with water hyacinth [Eichhornia crassipes (Mart.) Solms] roots (at standard facility plant densities equivalent to 2.2 wet g roots L(-1) septage); instead, nitrifiers were found almost entirely (90%) associated with suspended septage particulates. The role of root-associated nitrifiers in nitrification was examined in laboratory batch experiments where high plant root concentrations (7.4 wet g L(-1), representing a 38% net increase in total nitrifier populations over plant-free controls) yielded a corresponding increase (55%) in the non-substrate-limited nitrification rate (V(max)). However, within the full-scale septage-treating pond system, nitrification and denitrification rates remained unchanged when plant root concentrations were increased to 7.1 g roots L(-1) (achieved by increasing the surface area available for plants while maintaining the same tank volume). Under normal facility operating conditions, nitrification was limited by ammonium concentration, not nitrifier availability. Maximizing plant root concentrations was found to be an inefficient mechanism for increasing nitrification in organic particulate-rich wastewaters such as septage.  相似文献   

15.
Atmospheric deposition of nitrogenous compounds to ombrotrophic peatlands (i.e., those that have peat layers higher than their surroundings and receive nutrients and minerals exclusively by precipitation) has the potential to significantly alter ecosystem functioning. This study utilized the acetylene inhibition technique to estimate the relative importance of denitrification in nitrogen removal from a primarily ombrotrophic peatland, in an attempt to estimate the threat of increased nitrogen loadings to these areas. Estimates of mean rates of denitrification ranged from -2.76 to 84.0 ng N(2)O-N cm(-3) h(-1) (equivalent to -150 to 4800 microg N(2)O-N m(-2) h(-1)) using an ex situ core technique and from -8.30 to 5.98 microg N(2)O-N m(-2) h(-1) using an in situ chamber technique. Core rates may have been elevated over natural field levels due to effects of disturbance on substrate availability, and chamber rates may have been low due to diffusional constraints on acetylene and N(2)O. Net nitrification was also measured in an attempt to evaluate this process as a source of nitrate for denitrifiers. The low rates of net nitrification measured, in combination with the low rates of in situ denitrification and the very low amounts of free nitrate measured in this peatland, suggests that inorganic N turnover in this wetland is low. Results showed that nitrate was a limiting factor for denitrification in this peatland, with mean rates from nitrate-amended cores ranging from 13.1 to 260 ng N(2)O-N cm(-3) h(-1), and it is expected that increases in nitrogen loadings will increase denitrification rates in this ecosystem.  相似文献   

16.
人工湿地-氧化塘工艺组合对氮和磷去除效果研究   总被引:4,自引:1,他引:4  
本文在小试规模上,研究了下行流湿地、推流床湿地、氧化塘和兼性塘四种处理单元的四种工艺组合对氮、磷的去除效果,研究结果表明:下行流湿地 氧化塘工艺组合具有较好的充氧效果,推流床湿地后置也可以提高出水的溶解氧。四种工艺组合对离子和TP、IP的去除无显著差异。人工湿地中硝化作用的发生有利于NH^ 4f-N的去除,增加氧化塘可以提高系统的硝化能力,但同时也会增加出水中的N0^-3-N浓度。  相似文献   

17.
Riparian zones are recognized as landscape features that buffer streams from pollutants, particularly nitrogen. The objectives of this experiment were to (i) assess denitrification activity within a riparian zone and (ii) determine the influence of physical, chemical, and landscape features on denitrification. This experiment was conducted from 1994 to 1997 in North Carolina on a riparian zone contiguous to a spray field that was heavily loaded with swine lagoon wastewater. Denitrification enzyme activity (DEA) was measured on soils collected from (i) the soil surface, (ii) midway between the soil surface and water table, and (iii) above the water table. The DEA ranged from 3 to 1660 microg N(2)O-N kg(-1) soil h(-1). The DEA was highest next to the stream and lowest next to the spray field. Nitrate was found to be the limiting factor for denitrification. The DEA generally decreased with soil depth; means for the surface, middle, and bottom depths were 147, 83, and 67 microg N(2)O-N kg(-1) soil h(-1), respectively. These DEA values are higher than those reported for riparian zones adjoining cropland of the southeastern United States, but are lower than those reported for a constructed wetland used for treatment of swine wastewater. Regression analysis indicated that soil total nitrogen was the highest single factor correlated to DEA (r(2) = 0.65). The inclusion of water table depth, soil depth, and distance from the spray field improved the R(2) to 0.86. This riparian zone possessed sufficient soil area with high denitrifying conditions to be a significant factor in the removal of excess nitrogen in the ground water.  相似文献   

18.
Maximum rates of nitrate removal in a denitrification wall   总被引:3,自引:0,他引:3  
Denitrification walls are constructed by mixing a carbon source such as sawdust into soils through which ground water passes. These systems can reduce nitrate inputs to receiving waters by enhancing denitrification. Maximum rates of nitrate removal by denitrification need to be determined for design purposes. To determine maximum rates of nitrate removal we added excess nitrate (50 mg N L(-1)) to a trench up-gradient of a denitrification wall during a 9-d trial. Bromide (100 g L(-1)) was also added as a conservative tracer. Movement of nitrate and bromide was measured from shallow wells and soil samples were removed for measurements of denitrification, carbon availability, nitrate, and other microbial parameters. Rates of nitrate removal, determined from the ratio of NO3-N to Br and ground water flow, averaged 1.4 g N m(-3) of wall d(-1) and were markedly greater than denitrification rates determined using the acetylene block technique (average: 0.11 g N m(-3) of wall d(-1)). These nitrate removal rates were generally lower than reported in other denitrification walls. Denitrification rates increased when nitrate was added to the laboratory incubations, indicating that despite large nitrate inputs in the field, denitrification remained limited by nitrate. This limitation was partially attributed to nitrate predominantly moving through zones of greater hydraulic conductivity or in the mobile fraction of the ground water and slow diffusion to the immobile fraction where denitrifiers were active.  相似文献   

19.
人工湿地系统在垃圾渗滤液处理中的应用   总被引:3,自引:0,他引:3  
介绍了人工湿地的组成和类型,人工湿地去除渗滤液中有机物、氮、磷和重金属的机制。分析了影响人工湿地处理渗滤液效率的因子,并且结合人工湿地设计和运行维护提出了相关建议。根据国内外成功的工程实例,分析了人工湿地处理垃圾渗滤液的经济优势、生态优势,展示了该处理技术广泛的应用前景,对以后的研究进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号