首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Devils Lake is a terminal lake located in northeast North Dakota. Because of its glacial origin and accumulated salts from evaporation, the lake has a high concentration of sulfate compared to the surrounding water bodies. From 1993 to 2011, Devils Lake water levels rose by ~10 m, which flooded surrounding communities and increased the chance of an overspill to the Sheyenne River. To control the flooding, the State of North Dakota constructed two outlets to pump the lake water to the river. However, the pumped water has raised concerns about of water quality degradation and potential flooding risk of the Sheyenne River. To investigate these perceived impacts, a Soil and Water Assessment Tool (SWAT) model was developed for the Sheyenne River and it was linked to a coupled SWAT and CE‐QUAL‐W2 model that was developed for Devils Lake in a previous study. While the current outlet schedule has attempted to maintain the total river discharge within the confines of a two‐year flood (36 m3/s), our simulation from 2012 to 2018 revealed that the diversion increased the Sheyenne River sulfate concentration from an average of 125 to >750 mg/L. Furthermore, a conceptual optimization model was developed with a goal of better preserving the water quality of the Sheyenne River while effectively mitigating the flooding of Devils Lake. The optimal solution provides a “win–win” outlet management that maintains the efficiency of the outlets while reducing the Sheyenne River sulfate concentration to ≤600 mg/L.  相似文献   

2.
Devils Lake is an endorheic lake in the Red River of the North basin in northeastern North Dakota. During the last two decades, the lake water level has risen by nearly 10 m, causing floods that have cost more than 1 billion USD in mitigation measures. Another increase of approximately 1.5 m in the lake water level would cause spillage into the Sheyenne River. To alleviate this potentially catastrophic spillage, two artificial outlets were constructed. However, the artificial drainage of water into the Sheyenne River raises water quality concerns because the Devils Lake water contains significantly higher concentrations of dissolved solids, particularly sulfate. In this study, the Soil and Water Assessment Tool (SWAT) was coupled with the CE‐QUAL‐W2 model to simulate both water balance and sulfate concentrations in the lake. The SWAT model performed well in simulating daily flow in tributaries with ENS > 0.5 and |PBIAS| < 25%, and reproduced the lake water level with a root mean square error of 0.35 m for the study period from 1995 to 2014. The water temperature and sulfate concentrations simulated by CE‐QUAL‐W2 for the lake are in general agreement with the field observations. The model results show that the operation of the two outlets since August 2005 has lowered the lake level by 0.70 m. Furthermore, the models show pumping water from the two outlets raises sulfate concentrations in the Sheyenne River from ~100 to >500 mg/L. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

3.
Terminal lakes are impacted by regional changes in climate. Devils Lake (DL), North Dakota, United States (U.S.), is a case in which a prolonged shift in the precipitation pattern resulted in a 10‐m water‐level rise over the past two decades, which cost over one billion U.S. dollars in mitigation. Currently, DL is 1.5 m from an uncontrolled overspill to the nearby Sheyenne River, which could lead to unprecedented environmental, social, and economic costs. Water outlets recently implemented in the lake to slow the water‐level rise and prevent an uncontrolled overspill are subject to significant concerns over the introduction of invasive species and downstream water quality. We developed a hydrological model of the DL basin using the soil and water assessment tool and analyzed DL's overspill probability using an ensemble of statistically downscaled General Circulation Model (GCM) projections of the future climate. The results indicate a significant likelihood (7.3‐20.0%) of overspill in the next few decades in the absence of outlets; some members of the GCM integration ensemble suggest an exceedance probability of over 85.0 and 95.0% for the 2020s and 2050s, respectively. Full‐capacity outlets radically reduce the probability of DL overspill and are able to partially mitigate the problem by decreasing the average lake level by approximately 1.9 and 1.5 m in the 2020s and 2050s, respectively.  相似文献   

4.
ABSTRACT. Beginning of month water temperature profiles are estimated for each lake. These water temperature profiles along with surface water temperatures are used to determine the effects of thermal expansion and contraction of water on the net basin supply values obtained from water balance studies using end of month lake levels. It is demonstrated that net basin supply values (equivalent to precipitation on the lake minus the evaporation from the lake plus the runoff into the lake) obtained from water balance studies without accounting for the thermal expansion and contraction of water may be in error by as much as 100 percent during some months for each lake.  相似文献   

5.
ABSTRACT A linear programming model for a river basin was developed to include almost all water-related economic activity both for consumers and producers. The model was so designated that the entire basin or basin sub-division could be analyzed. The model included seven sectors, nine objective function criteria, and three river-flow levels. Economic basis for conflicts among sectors over incidence of cost allocation and level of economic activity can be traced to some chosen objective. The disposal of untreated household waste water, particularly from the rural household, directly into the river was consistent with maximizing net benefits and minimizing costs. The optimum resource allocation, water-treatment plants, farms and industry activities would change with flow level. For each of the three industries analyzed separately, paper, wool and tanning, public treatment of industrial waste water was the optimal treatment process in one or more of the solutions. Lake shoreline was the dominant feature determining lake-resource valuation. Implied capital value varied from $126 per shoreline foot to over $250 depending on discount rate. Implied prices on lake surface ranged from $42 to $147 per acre. Strong economic forces encouraged small lot sizes for vacation cottages.  相似文献   

6.
ABSTRACT Two lakes having similar soil types were studied to determine the effects of age and water fluctuations on plankton, benthos and fish populations. Bluff Lake is an older man-made lake which is drawn down in the mid-summer. Oktibbeha County Lake is a young lake and the water levels are maintained. Chemistry data from the two lakes indicate that their chemical properties are very similar. Neither lake would be considered very fertile. Net plankton populations in Bluff Lake and Oktibbeha County Lake were comparable when analyzed on a number of organisms per liter basis. Fluctuations of water levels did not seem to have an effect on the net plankton populations. The benthic population in Bluff Lake is slightly higher than that found in Oktibbeha County Lake. This is true for both numbers and weight per square meter. The species composition of benthic organisms in the two lakes were similar. Based on one-acre samples from each lake, Bluff Lake has a more balanced fish population than does Oktibbeha County Lake. Neither, however, seems to support populations of game fish in which a high percentage of these are in the available or harvestable range. Both lakes contain high populations of gizzard shad.  相似文献   

7.
ABSTRACT: Devils Hole is a collapse depression connected to the regional carbonate aquifer of the Death Valley ground water flow system. Devils Hole pool is home to an endangered pupfish that was threatened when irrigation pumping in nearby Ash Meadows lowered the pool stage in the 1960s. Pumping at Ash Meadows ultimately ceased, and the stage recovered until 1988, when it began to decline, a trend that continued until at least 2004. Regional ground water pumping and changes in recharge are considered the principal potential stresses causing long term stage changes. A regression was found between pumpage and Devils Hole water levels. Though precipitation in distant mountain ranges is the source of recharge to the flow system, the stage of Devils Hole shows small change in stage from 1937 to 1963, a period during which ground water withdrawals were small and the major stress on stage would have been recharge. Multiple regression analyses, made by including the cumulative departure from normal precipitation with pumpage as independent variables, did not improve the regression. Drawdown at Devils Hole was calculated by the Theis Equation for nearby pumping centers to incorporate time delay and drawdown attenuation. The Theis drawdowns were used as surrogates for pumpage in multiple regression analyses. The model coefficient for the regression, R2= 0.982, indicated that changes in Devils Hole were largely due to effects of pumping at Ash Meadows, Amargosa Desert, and Army 1.  相似文献   

8.
Abstract: The purpose of this article was to show how the value of recreational boating can be assessed and how that value can be linked to water levels. Data were gathered via a survey of recreational boaters to determine days boated and willingness‐to‐pay (net economic value) for boating on Lake Ontario and on the St. Lawrence River in 2002. Depth measurements were taken at marinas and yacht clubs, boat launch ramps, and private docks. Stage‐damage curves were used to pinpoint at what water levels and to what extent boaters would be impacted. Boaters recreated an estimated 1.3 million days in 2002 and spent an estimated US$178 million in New York counties bordering Lake Ontario and the St. Lawrence River. The mean net economic value per day per boat (above current expenditures) was $69.36, with an estimated total net economic value of US$90 million. Using Lake Ontario as an example, the stage‐damage curves show that the overall negative impact would be small, between 245 and 248 ft. Maintaining water levels within that range for the entire boating season would be ideal for Lake Ontario boaters and associated businesses.  相似文献   

9.
ABSTRACT: A framework for combining economic factors and the hydrolo of detention basins is provided. The general development of economic production functions for water quality (sediment) and flood control is discussed. Example production functions are generated to compare water quality (sediment control only) and flood control. For the given example, the design of a detention basin for downstream sediment control is economically unwarranted. When compared to on-site detention facilities, regional detention structures appear to be more practical from an economic standpoint for water quality control. Since sediment was the only water quality parameter assessed, it is entirely possible that the design of a detention basin for water quality control would be justified if the effects of all pollutants of concern could be quantified. Policy aspects of detention facilities that relate to the economics of water quality control are also discussed.  相似文献   

10.
南四湖湿地建设的综合效益   总被引:1,自引:0,他引:1  
南四湖作为南水北调东线工程的主要输水干线和调蓄水库,目前人工湿地建设已初见成效。从环境效益、生态效益、社会效益、经济效益、科研效益等方面分析了南四湖人工湿地在改善南四湖流域生态环境、稳定南水北调调水水质方面发挥的重要作用。  相似文献   

11.
ABSTRACT: The Caloosahatchee River has two major sources of freshwater one from its watershed and the other via an artificial connection to Lake Okeechobee. The contribution of each source to the freshwater discharge reaching the downstream estuary varies and either may dominate. Routine monitoring data were analyzed to determine the effects of total river discharge and source of discharge (river basin, lake) on water quality in the downstream estuary. Parameters examined were: color, total suspended solids, light attenuation, chlorophyll a, and total and dissolved inorganic nitrogen and phosphorus. In general, the concentrations of color, and total and dissolved inorganic nitrogen increased, and total suspended solids decreased, as total discharge increased. When the river basin was the major source, the concentrations of nutrients (excepting ammonia) and color in the estuary were relatively higher than when the lake was the major source. Light attenuation was greater when the river basin dominated freshwater discharge to the estuary. The analysis indicates that water quality in the downstream estuary changes as a function of both total discharge and source of discharge. Relative to discharge from the river basin, releases from Lake Okeechobee do not detectably increase concentrations of nutrients, color, or TSS in the estuary.  相似文献   

12.
ABSTRACT: The complex morphometry of Lake Champlain requires that detailed, regional studies be made, and the results integrated, to yield total lake conditions. Using specific conductance measurements, and values of total dissolved solids calculated from them, we present an approach to assessing the materials budget of the lake. The sampling program involved inventorying all 319 tributaries, determining the watershed area for each, and dividing the Champlain basin into appropriate hydrographic regions. Data were obtained from samples collected from 41 selected streams (representing 97.5% of the annual water input), sampling occurring in all seasons of the year since 1970. Results indicate that over one million metric tonnes of total dissolved solids enter Lake Champlain annually, about two-thirds (63%) from the eastern (Vermont) portion and almost one-fourth (22%) from the western (New York) part of the drainage basin, the remainder (15%) entering from the south end. Of the total quantity added annually, 17.4% is retained in the lake, indicating that a solids build-up is occurring, at a significant rate. We suggest that specific conductance, and therefore total dissolved solids, be utilized as a convenient indicator of water quality conditions, and results applied to permit more efficient watershed management.  相似文献   

13.
ABSTRACT: Lake Chapala, whose primary tributary is the Río Lerma, is the largest freshwater lake in Mexico and for the past 95 years has maintained an average storage capacity close to 6,700 Mm3. Starting hi the early 1970s, the Lerma-Chapala basin rapidly industrialized. In response to these upstream anthropogenic activities, the fisheries, aesthetics, and water quality of Lake Chapala have decreased as a consequence of the increasing chemical and biologic pollutants mainly from the Río Lerma. Additionally, the growth of Guadalajara has resulted in increasing potable water demands on the lake to satisfy a population currently greater than 4.5 million. During the 1980s, the outflow and water losses from the lake substantially exceeded the inflow and other water contributions. In this paper, the recent behavior of the hydrologic and bathymetric parameters of Lake Chapala are summarized and some important physical stresses on the system are identified. The focus of this work is the 1934–1989 period, and it is shown that starting around 1980 some of the main contributors to the lake water balance were severely perturbed and the lake reached its second lowest recorded level. The disturbances of the system are so severe that the entire regional ecosystem could be irreversibly affected in the near future.  相似文献   

14.
Lake Taihu is the third largest freshwater lake in China. It serves many social, economic, and ecological purposes in the drainage basin. Unfortunately, the water has been heavily polluted due to rapid industrialization and urbanization during the last two decades. Notwithstanding great efforts made so far to improve the water quality, the environmental situation is still far from being optimistic. The basin and the lake are facing a range of severe environmental challenges: rapid socio-economic development continues to place great pressures on the environment, current pollution control projects have many problems from the viewpoint of effectiveness and efficiency of their implementations, and the non-point sources of pollution such as agricultural fields, for which control is more difficult than for industrial point sources, have become the main contributors to serious eutrophication of the lake. Considering the characteristics of the environmental challenges and problems confronting the basin and the lake, we focus on integrated environmental management (IEM) as a promising and effective approach to overcome these predicaments. Current practices and problems of environmental management in the basin are examined, and potential future developments are discussed. Three aspects of the IEM are emphasized: institutional cooperation, public participation, and internalization of environmental externalities. We think these are the most critical for not only the basin but also for the whole of China to achieve a sustainable society.  相似文献   

15.
ABSTRACT: In 1998 and 1999, third‐order watersheds in high mature forest (HMF) and low mature forest (LMF) classes were selected along gradients of watershed storage within each of two hydrogeomorphic regions in the Lake Superior Basin to evaluate threshold effects of storage on hydrologic regimes and watershed exports. Differences were detected between regions (North and South Shore) for particulates, nutrients, and pH, with all but silica values higher for South Shore streams (p < 0.05). Mature forest effects were detected for turbidity, nutrients, color, and alkalinity, with higher values in the LMF watersheds, that is, watersheds with less that 50 percent mature forest cover. Dissolved N, ammonium, N:P, organic carbon, and color increased, while suspended solids, turbidity, and dissolved P decreased as a function of storage. Few two‐way interactions were detected between region and mature forest or watershed storage, thus threshold based classification schemes could be used to extrapolate effects across regions. Both regional differences in water quality and those associated with watershed attributes were more common for third‐order streams in the western Lake Superior drainage basin as compared with second‐order streams examined in an earlier study. Use of ecoregions alone as a basis for setting regional water quality criteria would have led to misinterpretation of reference condition and assessment of impacts in the Northern Lakes and Forest Ecoregion.  相似文献   

16.
ABSTRACT: The economic feasibility of a large scale dual purpose (desalting water and power production) facility were evaluated. Although a site in the Tularosa basin of southern New Mexico was chosen as a case study for this analysis, it is believed that the approach and consequential results would be applicable to alternative sites in the Southwest. The basic project evaluated included: a) a ground water well field; b) a dual purpose, nuclear, desalination plant; c) a mineral recovery plant; and d) a reservoir for recreation and irrigation storage. Principle project outputs included electrical power, minerals, recreation, and water for either irrigated agricultural production or export to an adjoining river basin. Two alternative project designs were developed for detailed analysis. The first alternative encompassed all major project components. The results, in discounted net values used to assess the feasibility of the project, were essentially negative; that is, values were less than zero for full scale development. The net benefits ranged from $-986.57 million at a 5 percent discount rate, to $-1,137.528 million at a discount rate of 10 percent. In the second alternative, exportation of the desalted water from the Tularosa basin to two adjacent rivers was analyzed with somewhat better net benefits, ranging from $-382,527 million to $-478,612 million at the 5 and 10 percent discount rates.  相似文献   

17.
With increasing water scarcity and competing uses and users, water use efficiency is becoming increasingly important in many parts of developing countries. The lake Naivasha basin has an array of different water users and uses ranging from large scale export market agriculture, urban domestic water users to small holder farmers. The small scale farmers are located in the upper catchment areas and form the bulk of the users in terms of area and population. This study used farm household data to explore the overall technical efficiency, irrigation water use efficiency and establish the factors influencing water use efficiency among small scale farmers in the Lake Naivasha basin in Kenya. Data envelopment analysis, general algebraic and modeling system, and Tobit regression methods were used in analyzing cross sectional data from a sample of 201 small scale irrigation farmers in the lake Naivasha basin. The results showed that on average, the farmers achieved only 63 % technical efficiency and 31 % water use efficiency. This revealed that substantial inefficiencies occurred in farming operations among the sampled farmers. To improve water use efficiency, the study recommends that more emphasis be put on orienting farmers toward appropriate choice of irrigation technologies, appropriate choice of crop combinations in their farms, and the attainment of desirable levels of farm fragmentation.  相似文献   

18.
Creating and restoring wetland and riparian ecosystems between farms and adjacent streams and rivers in the Upper Mississippi River Basin would reduce nitrogen loads and hypoxia in the Gulf of Mexico and increase local environmental benefits. Economic efficiency and economic impacts of the Hennepin and Hopper Lakes Restoration Project in Illinois were evaluated. The project converted 999 ha of cropland to bottomland forest, backwater lakes, and flood‐plain wetland habitat. Project benefits were estimated by summing the economic values of wetlands estimated in other studies. Project costs were estimated by the loss in the gross value of agricultural production from the conversion of corn and soybean acreage to wetlands. Estimated annual net benefit of wetland restoration in the project area amounted to US$1,827 per ha of restored wetland or US$1.83 million for the project area, indicating that the project is economically efficient. Impacts of the project on the regional economy were estimated (using IMPLAN) in terms of changes in total output, household income, and employment. The project is estimated to increase total output by US$2,028,576, household income by US$1,379,676, and employment by 56 persons, indicating that it has positive net economic impacts on the regional economy.  相似文献   

19.
ABSTRACT: Dilution/flushing has been documented as an effective restoration technique to restore eutrophic Moses and Green Lakes in Washington State. The dilution water added to both lakes was low in nitrogen and phosphorus content relative to the lake or normal input water. Consequently, lake nutrient content dropped predictably. Dilution or flushing rates were about ten times normal during the spring-summer periods in Moses Lake and three times normal on an annual basis in Green Lake. Improvement in quality (nutrients, algae, and transparency) was on the order of 50 percent in Moses Lake and even greater in Green Lake. The facilities for supplying dilution water were largely in place for the cited lakes; thus, costs for water transport were minimal. Available facilities, and therefore, costs, for water transport would usually vary greatly, however. Achieving maximum benefit from the technique may be more limited by availability of low nutrient water rather than facilities costs. Quality improvement may occur from physical effects of algal cell washout and water column instability if only high nutrient water is available.  相似文献   

20.
ABSTRACT Existing meteorological controls of water exchange by precipitation and evaporation on the Great Lakes are almost entirely inadvertent and related to man's urban-industrial complexes and their effect upon precipitation processes. These inadvertent effects have led to 10 to 40% increases in precipitation in localized areas within the basin. Envisioned growth of urban-industrial complexes within the Great Lakes region should lead to more inadvertent weather modification in the Basin. The only existing planned weather modification efforts are those at Lake Erie which are attempting to eliminate by redistribution the concentration of lake-derived heavy snowfall along the south shore. It appears reasonable to assume that practical increases of lake precipitation on the order of 5-20% could be achieved on an operational basis over the Great Lakes in the next 10 years, but the time of accomplishment will depend on national priorities, international cooperation, and economic factors. These activities would certainly produce a sizeable increase in the water quantity of the Great Lakes and should result in an improvement in water quality. Operational methods of evaporation suppression applicable to the lakes are just not available. Meteorological controls to ameliorate certain undesirable lake-effect snowstorms are a near reality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号