首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The loss of the world's reservoir capacity to sedimentation can be mitigated by altering dam operations to release sediment downstream. However, legal uncertainty regarding whether dam owners are liable for damages to surrounding landowners due to altered operations provides a significant disincentive for sustainable sediment management. Past work recommends that courts apply a “rule of reasonableness” in assessing liability: dam owners should be held liable for damages only if they act unreasonably in altering operations, and surrounding landowners should take reasonable measures to mitigate foreseeable damage. Based on past cases, judicial determinations of reasonable reservoir management and reasonable precautionary measures by landowners are generally highly speculative, controversial, and based on limited information. Courts can ease the future burden of making these difficult determinations with rulings that create economic incentives for parties to act reasonably. For example, courts might entitle landowners to be free from sediment related damages, and protect the entitlement with a liability rule. This gives dam owners an economic incentive to release sediment only if the benefits of doing so outweigh court ordered damages to landowners. Past judicial decisions are largely consistent with this legal regime.  相似文献   

2.
ABSTRACT: There is a pressing need for tools to predict the rates, magnitudes, and mechanisms by which sediment is removed from a reservoir following dam removal, as well as for tools to predict where this sediment will be deposited downstream and how it will impact downstream channel morphology. In the absence of adequate empirical data, a good initial approach is to examine the impacts of dam removal within the context of the geomorphic analogies of channel evolution models and sediment waves. Channel changes at two dam breaching sites in Wisconsin involved a succession of channel forms and processes consistent with an existing channel evolution model. Sediment transported downstream after removal of other dams suggests that reservoir sediment may be translated downstream either as a distinct wave or gradually eroded away. More extensive data collection on existing dam removals is warranted before undertaking the removal of a large number of dams. However, if removal is to proceed based on current knowledge, then geomorphic analogies can be used as the foundation for sediment management and stabilization schemes.  相似文献   

3.
Land management agencies commonly use rapid assessments to evaluate the impairment of gravel‐bed streams by sediment inputs from anthropogenic sources. We question whether rapid assessment can be used to reliably judge sediment impairment at a site or in a region. Beyond the challenges of repeatable and accurate sampling, we argue that a single metric or protocol is unlikely to reveal causative relations because channel condition can result from multiple pathways, processes, and background controls. To address these concerns, a contextual analysis is needed to link affected resources, causal factors, and site history to reliably identify human influences. Contextual analysis is equivalent in principle to cumulative effects and watershed analyses and has a rich history, but has gradually been replaced by rapid assessment methods. Although the approaches differ, rapid assessment and contextual analysis are complementary and can be implemented in a two‐tiered approach in which rapid assessment provides a coarse (first‐tier) analysis to identify sites that deserve deeper contextual assessment (second‐tier). Contextual analysis is particularly appropriate for site‐specific studies that should be tailored to local conditions. A balance between rapid assessment and contextual analysis is needed to provide the most effective information for management decisions.  相似文献   

4.
ABSTRACT: Reservoir water levels, observation well data, and meteorological parameters were collected at a recharge dam site in Central Saudi Arabia. This data, along with other information on the reservoir and the underlying aquifer, were used to estimate the amounts of recharge through the reservoir bed by applying two water budget models. The first is a water budget model for the reservoir only, while the second is for an aquifer reach extending upstream and downstream from the reservoir. The results of the two approaches were discussed and compared.  相似文献   

5.
Abstract: A present and future challenge for water resources engineers is to extend the useful life of our dams and reservoirs. Ongoing reservoir sedimentation in impoundments must be addressed; sedimentation in many reservoirs already limits project benefits and effective project life. Sustainability requires that incoming sediment be moved downstream past the impounding dam. We use Lewis and Clark Lake, the most downstream of the six Missouri River main stem reservoirs, to demonstrate how a reservoir in advanced stages of its project life could be converted to a sustainable system with local benefits exceeding costs by a factor of 1.5. Full consideration of benefits would further enhance project justification. The proposed strategy involves four phases that will take about 50 years to complete. Cost estimates for this potential project range from the quantitative to the plausible, but it is clear that the results justify a full engineering, environmental, and economic study of this model project. If implemented, the project will create scientific knowledge and develop technologies useful for achieving sustainability at many other reservoirs in the Mississippi River basin and beyond.  相似文献   

6.
Applications of Turbidity Monitoring to Forest Management in California   总被引:1,自引:1,他引:0  
Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.  相似文献   

7.
Although various studies have shown thatfarmers believe there is the need for a producer-ledinitiative to address the environmental problems fromagriculture, farmers in several Canadian provinceshave been reluctant to widely participate inEnvironmental Farm Plan (EFP) programs. Few studieshave examined the key issues associated with adoptingEFP programs based on farmers', as opposed to policymakers', perspectives on why producers are reluctantto participate in the program. A study adapting VanRaaij's (1981) conceptual model of the decision-makingenvironment of the firm, and prospect theory on valuefunctions associated with the gains and losses fromrisky choices can be used to characterize how farmersperceive potential risks in environmental farmplanning. This framework can be used to assert thatfarmers are concerned about risks of public disclosureof potentially incriminating environmental informationfrom farms because the EFP program requirements foridentification and extensive documentation of farminformation is perceived by farmers as facilitatingthe accessibility of environmental information to thepublic, and public investigative efforts. Although theEFP program does not explicitly generate informationabout the environmental conditions of a farm nor thedisclosure of such information to the public, itcreates the possibility of generating and divulgingpotentially incriminating information that the farmermay want to treat as confidential. Yet, alone, theserisks of public disclosure concerns should not preventfarmers from participating in the EFP. Awareness ofand participation in environmental farm planning canbe increased if farmers and policy makers understandwhat the risks are, and how they arise. Aspects of theEFP process that have the potential to generate riskof public disclosure concerns relate to farm reviews,documentation and record keeping, and correctiveaction plans. There are legal and policy instrumentsthat can offer various forms of protection and helpminimize such risks, and these need to be assessed.  相似文献   

8.
ABSTRACT: Reservoir water quality is traditionally monitored and evaluated based on field data. Collecting and analyzing field water quality data are costly and time consuming tasks, and whether a limited number of field data truly characterize the spatial variation of the trophic state within a vast water body is often disputed. In this study we utilize Landsat TM data to estimate the water quality and trophic state of the Te‐Chi reservoir in Central Taiwan. A modified multi‐parameter model of Carlson's trophic state index (TSI) was developed for the Te‐chi reservoir. Water quality parameters (concentration of chlorophyll‐a, total phosphorous measurement, and secchi disk depth) required by the model are found to have high correlations with combinations of TM bands. Therefore, TM data are used to map the trophic state of the reservoir. TM‐derived TSI maps of the reservoir reveal that, in summer, the trophic state in the reservoir generally improves from upstream to downstream and that zones of distinct trophic state exist. A trophic state index based on secchi disk depth may give erroneous values in the upstream section of the reservoir pool due to high sediment concentration in the reservoir inflow. We conclude that the Te‐Chi reservoir is eutrophic or worse in summer and meso‐eutrophic in winter. Implementation of best management practices to reduce nonpoint source pollution in the upstream watershed is highly recommended. This study demonstrates the capability of mapping the trophic state in impounded water bodies using the Landsat TM data.  相似文献   

9.
Sedimentation is emerging as a key issue in sustainable reservoir management. One approach to controlling reservoir sedimentation is to trap sediment in hydraulic structures upstream of the reservoir. In the 1,163‐km2 catchment of the Dahan River (Taiwan) over 120 “sabo” dams were built to reduce sediment yield to Shihmen Reservoir. Built in 1963 for water supply, Shihmen has lost over 40% of its 290‐Mm3 storage capacity to sedimentation. Most of these upstream structures were small, but three had capacities >9 Mm3. Field measurements and historical data from the Water Resources Agency show most smaller dams had filled with sediment by 1976. The three largest were full or nearly so by 2007, when one (Barlin Dam) failed, releasing a pulse of 7.5 Mm3, most of its 10.4 Mm3 stored sediment downstream. The Central Range of Taiwan is rapidly eroding (denudation rates 3‐6 mm/yr), so geologically high loads make sediment problems manifest sooner. Even in other environments, however, eventually small dams built upstream of large reservoirs are likely to fill themselves, creating multiple small sediment‐filled reservoirs, some located in sites inaccessible to mechanical removal. Our analysis suggests sabo dams do not offer a long‐term basis for controlling reservoir sedimentation in such a high‐sediment yield environment. Sustainable solutions must somehow pass sediment downstream, as would be accomplished by a sediment bypass around Shihmen Reservoir, as now being studied.  相似文献   

10.
Management of Sedimentation in Tropical Watersheds   总被引:2,自引:0,他引:2  
/ The sedimentation of reservoirs is a serious problem throughout the tropics, yet most attempts to control sedimentation in large river basins have not been very successful. Reliable information on erosion rates and sources of sediments has been lacking. In regions where geologically unstable terrain combines with high rainfall, natural erosion rates might be so high that the effects of human activity are limited. Estimates of natural erosion in these situations often have been poor because of the episodic nature of most erosion during large storms and because mass-wasting may supply much of the sediment. The predominance of mass-wasting in some watersheds can result in an unexpectedly high ratio of bedload to suspended load, shifting sedimentation to "live" rather than "dead" storage within reservoirs. Furthermore, the inappropriate use of the Universal Soil Loss Equation to assess the effectiveness of erosion control measures has led to inaccurate estimates of the sediment reduction benefits that could accrue to watershed treatment efforts. Although reducing erosion from cultivated areas is desirable for other reasons, efforts aimed at reducing reservoir sedimentation by controlling agricultural sources of erosion may have limited benefits if the principal sources are of natural origin or are associated with construction of the dams and reservoirs and with rural roads and trails. Finally, the most appropriate locations for watershed rehabilitation depend on the magnitude of temporary storage of colluvium and alluvium within the river basin: Where storage volume is large and residence time of sediment very long, reducing agricultural erosion may have limited impacts on sedimentation within the expected life of a reservoir. Systematic development and analysis of sediment budgets for representative watersheds is needed to address these limitations and thereby improve both the planning of river basin development schemes and the allocation of resources towards reducing sedimentation. When sedimentation of reservoirs is the key issue, sediment budgets must focus especially on channel transport rates and sediment delivery from hillsides. Sediment budgets are especially critical for tropical areas where project funds and technical help are limited. Once sediment budgets are available, watershed managers will be able to direct erosion control programs towards locations where they will be most effective. KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control  相似文献   

11.
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies.  相似文献   

12.
Scenario‐based and scenario‐neutral impacts assessment approaches provide complementary information about how climate change‐driven effects on streamflow may change the operational performance of multipurpose dams. Examining a case study of Cougar Dam in Oregon, United States, we simulated current reservoir operations under scenarios of plausible future hydrology. Streamflow projections from the CGCM3.1 general circulation model for the A1B emission scenario were used to generate stochastic reservoir inflows that were then further perturbed to simulate a potentially drier future. These were then used to drive a simple reservoir model. In the scenario‐based analysis, we found reservoir operations are vulnerable to climate change. Increases in fall and winter inflow could lead to more frequent flood storage, reducing flexibility to store incoming flood flows. Uncertainty in spring inflow volume complicates projection of future filling performance. The reservoir may fill more or less often, depending on whether springs are wetter or drier. In the summer, drawdown may occur earlier to meet conservation objectives. From the scenario‐neutral analysis, we identified thresholds of streamflow magnitude that can predict climate change impacts for a wide range of scenarios. Our results highlight projected operational challenges for Cougar Dam and provide an example of how scenario‐based and scenario‐neutral approaches may be applied concurrently to assess climate change impacts.  相似文献   

13.
Regarding emerging large‐scale reservoir operation models, reports of reservoir operation feedback for hydrologic modeling are rare, and little attention has been paid to flood control. An operation scheme considering multilevel flood control (MLFC) was first proposed in this study, but more reservoir information was needed. Thus, an alternative scheme was proposed that consisted of a modified version of the reservoir operation scheme in the Soil and Water Assessment Tool Model (MSWAT scheme). These schemes were coupled to a land surface and hydrologic model system with feedback, i.e., a system in which reservoir operation can affect the subsequent simulation, and were investigated in the Huai River Basin. The results show reservoir storage and peak flow were generally overestimated by the original SWAT reservoir scheme (SWAT scheme). Compared with the SWAT scheme, the MSWAT scheme successfully reduced the simulated storage and peak flow at the reservoir stations. For the downstream stations, the streamflow simulations were improved at a significance level of 5%. The performances of the MSWAT and MLFC schemes at the reservoir stations were nearly equivalent. Importantly, reservoir operation feedback to hydrologic modeling was necessary because the reservoir operation effects could not be transferred downstream without it. The streamflow simulation of a reservoir station located on a flat plain was less sensitive to feedback than that of a mountain reservoir station.  相似文献   

14.
ABSTRACT: The proposed removal of Ballville Dam was assessed by (1) using a new Geographic Information Systems (GIS) based method for calculating reservoir sediment storage, (2) evaluating sediment properties and contamination from core data, and (3) assessing downstream impacts from sediment routing calculations. A 1903 (pre‐dam) map was manipulated using GIS to recreate the reservoir bathymetry at time of dam construction and used in combination with a detailed 1993 bathymetric survey to calculate sediment volumes and thickness. Reservoir sediment properties and geochemistry were determined from 14 sediment vibracores. Annual sedimentation rates varied from 1.7 to 4.3 g/cm2/yr based on Cesium‐137 (137Cs) and Lead‐210 (210Pb) geochronology and dated flood layers. The pore fluid geochemistry (Ba, Co, Cu, Mn) of four cores showed surficial enrichments in Cu, while Co and Mn show secondary peaks within the sediments. GIS calculations showed that a designed channel through the former reservoir able to accommodate the 10 percent Probable Maximum Flood (PMF) would require removing approximately 0.35 million m3 of sediment (27 percent of the reservoir fill), either by dredging at a cost of up to $6.3 million or by releasing fine grained sediment downstream. A sediment routing model was applied for the critical 6 km downstream using four cross sections. The sediment routing model predicts that, for flows exceeding minimum Mean Daily Flow (1924 to 1998 data), greater than 90 percent of this sediment would be transported through downstream reaches into Lake Erie (Sandusky Bay).  相似文献   

15.
Abstract: Forest practices have progressively changed over the last 30 years in the Pacific Northwest to address water quality concerns. There have been some assessments of these new management practices made at a site scale but very few studies have attempted to evaluate their efficacy at reducing cumulative sediment production at a watershed scale. Such an evaluation is difficult due to the spatial and temporal variability in sediment delivery and transport processes. Due to this inherent variability, detecting a response to management changes requires a long‐term data record. We utilized a water quality dataset collected over 30 years at four locations in the Deschutes River watershed (western Washington) to assess trends in turbidity and whether sediment control procedures implemented over this time period had any detectable influence. The sample sites ranged from small headwater streams (2.4 and 3.0 km2) to the mainstem of the Deschutes River (150 km2). Declining trends in turbidity were detected at all the permanently monitored sites. The mainstem Deschutes River site, which integrates sediment processes from the entire study watershed, showed dramatic declines in turbidity even with continued active forest management. For the small basins, logging and road construction occurred in the 1970s and 1980s and turbidity declined thereafter, achieving prelogging levels by 2000. There are no temporal trends in flow that could be responsible for the observed trends in turbidity. Our results suggest that increased attention to reducing sediment production from roads and minimizing the amount of road runoff reaching stream channels has been the primary cause of the declining turbidity levels observed in this study.  相似文献   

16.
Ocoee Lake No. 3 is the first reservoir receiving suspended sediments contaminated with trace metals discharged by acid mine effluents from the Ducktown Mining District, Tennessee. Bottom sediments (0-5 cm) from the lake were sampled to assess the potential for future adverse environmental effects if no remediation controls or activities are implemented. The sediments were found to include a major component (173 +/- 19 g kg(-1)) that dissolved in 6 mol L(-1) HCl within 24 h. This acid-soluble and relatively labile fraction contained high concentrations of Fe (460 +/- 40 g kg(-1)), Al (99 +/- 11 g kg(-1)), Mn (10 +/- 8 g kg(-1)), Cu (2000 +/- 700 mg kg(-1)), Zn (1300 +/- 200 mg kg(-1)), and Pb (300 +/- 200 mg kg(-1)). When the pH of water in contact with the sediment was decreased experimentally from 6.4 to 2.6, the concentrations of dissolved trace metals increased by factors of 2200 for Pb, 160 for Cu, 21 for Zn, 9 for Cd, 8 for Ni, and 5 for Co. The order in which metals were released with decreasing pH was the reverse of that reported for pH-dependent sorption of these metals in upstream systems. Substantial release of trace metals from the sediment was observed even by a modest decrease of pH from 6.4 to 5.9. Therefore, the metal-rich sediment of the lake should be considered as potentially hazardous to bottom-dwelling aquatic species and other organisms in the local food chain. In addition, if the reservoir is dredged or if the dam is removed, the accumulated sediment may have to be treated for recovery of sorbed metals.  相似文献   

17.
U.S. Forest Service managers are required to incorporate social and biophysical science information in planning and environmental analysis. The use of science is mandated by the National Environmental Policy Act, the National Forest Management Act, and U.S. Forest Service planning rules. Despite the agency’s emphasis on ‘science-based’ decision-making, little is known about how science is actually used in recreation planning and management. This study investigated the perceptions of Forest Service interdisciplinary (ID) team leaders for 106 NEPA projects dealing with recreation and travel management between 2005 and 2008. Our survey data show how managers rate the importance of social and biophysical science compared to other potential ‘success factors’ in NEPA assessments. We also explore how team leaders value and use multi-disciplinary tools for recreation-related assessments. Results suggest that managers employ a variety of recreation planning tools in NEPA projects, but there appears to be no common understanding or approach for how or when these tools are incorporated. The Recreation Opportunity Spectrum (ROS) was the most frequently used planning tool, but the Visitor Experience and Resource Protection (VERP) framework was the most consistently valued tool by those who used it. We recommend further evaluation of the strengths and weaknesses of each planning tool and future development of procedures to select appropriate planning tools for use in recreation-related NEPA assessments.  相似文献   

18.
Reservoir management is a critical component of flood management, and information on reservoir inflows is particularly essential for reservoir managers to make real‐time decisions given that flood conditions change rapidly. This study's objective is to build real‐time data‐driven services that enable managers to rapidly estimate reservoir inflows from available data and models. We have tested the services using a case study of the Texas flooding events in the Lower Colorado River Basin in November 2014 and May 2015, which involved a sudden switch from drought to flooding. We have constructed two prediction models: a statistical model for flow prediction and a hybrid statistical and physics‐based model that estimates errors in the flow predictions from a physics‐based model. The study demonstrates that the statistical flow prediction model can be automated and provides acceptably accurate short‐term forecasts. However, for longer term prediction (2 h or more), the hybrid model fits the observations more closely than the purely statistical or physics‐based prediction models alone. Both the flow and hybrid prediction models have been published as Web services through Microsoft's Azure Machine Learning (AzureML) service and are accessible through a browser‐based Web application, enabling ease of use by both technical and nontechnical personnel.  相似文献   

19.
ABSTRACT: Reservoirs, as well as lakes and estuaries, are subject to sediment accumulation. The rate at which sedimentation occurs is accelerated or diminished by man's activities. Acceptable rates of sedimentation are considered on the basis of costs of sediment storage and removal and a review of reservoirs constructed with sediment removal capabilities is given. The rates of reservoir sedimentation in the United States are summarized based on reliable data obtained from all sizes of reservoirs. Problems confronting the engineer concerning reservoir construction and maintenance are discussed on the basis of these data.  相似文献   

20.
This study seeks to improve understanding of temperature patterns in reservoir outflows. We examined water temperatures in an irrigation storage reservoir, Island Park Reservoir, and its outflow, Henry’s Fork of the Snake River in eastern Idaho. Our objectives were to (1) quantify the extent to which daily temperature ranges in the reservoir outflow deviated from other reaches of the Henry’s Fork, and (2) test whether the reservoir’s net volume change during the summer — expressed as the volume of water remaining in the reservoir on September 1 — predicted mean summer temperature in the outflow. Two years of temperature data showed dampened diel temperature cycles in the reservoir outflow. Model selection with 17 years of climatic, hydrologic, and reservoir management variables found mean summer temperature in the outflow was best predicted by September 1 reservoir volume and average summer air temperature. Two years of weekly reservoir thermal profiles indicated large changes in reservoir volume eliminated cool hypolimnetic water and encouraged mixing, allowing warm epilimnetic water to be discharged into the outflow. Increases in future drought frequency and severity and increases in summer air temperatures could increase the frequency of occurrence of high mean summertime water temperatures in the outflow. Our study provides important information for local managers by quantifying influences on outflow temperatures and the downstream river ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号