首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
A multi‐scale soil moisture monitoring strategy for California was designed to inform water resource management. The proposed workflow classifies soil moisture response units (SMRUs) using publicly available datasets that represent soil, vegetation, climate, and hydrology variables, which control soil water storage. The SMRUs were classified, using principal component analysis and unsupervised K‐means clustering within a geographic information system, and validated, using summary statistics derived from measured soil moisture time series. Validation stations, located in the Sierra Nevada, include transect of sites that cross the rain‐to‐snow transition and a cluster of sites located at similar elevations in a snow‐dominated watershed. The SMRUs capture unique responses to varying climate conditions characterized by statistical measures of central tendency, dispersion, and extremes. A topographic position index and landform classification is the final step in the workflow to guide the optimal placement of soil moisture sensors at the local‐scale. The proposed workflow is highly flexible and can be implemented over a range of spatial scales and input datasets can be customized. Our approach captures a range of soil moisture responses to climate across California and can be used to design and optimize soil moisture monitoring strategies to support runoff forecasts for water supply management or to assess landscape conditions for forest and rangeland management.  相似文献   

3.
With the exception of the Sierra-Cascade mountain ranges, the Rocky Mountain chain is the only portion of the western United States that consistently yields more than 3 cm of flow annually. Ten to 15 percent of the land mass in the region produces the majority of the total flow. This paper addresses the opportunities for increasing flow through forest manipulation, and summarizes the research base that has yielded the current “state of the art” understanding of how snow pack and vegetation management can influence water yield. The optimal harvest design appears to consist of small openings, irregularly shaped, and about 3 to 8 tree heights in width parallel to the wind.  相似文献   

4.
ABSTRACT: Historical records of streamflow for an eastward- and a westward-draining stream in the northern Sierra Nevada have been analyzed for evidence of changes in runoff characteristics and patterns of variability. A trend of increasing and more variable winter streamflow began in the mid-1960s. Mean monthly streaniflow during December through March was substantially greater for water years 1965–1990 compared to water years 1939–1964. Increased winter and early-spring streamflow during the later period is attributed to small increases in temperature, which increase the rain-to-snow ratio at lower altitudes and cause the snowpack to melt earlier in the season at higher altitudes. The timing of snowmelt runoff on the western slope of the Sierra Nevada is more sensitive than it is on the eastern slope to changes in temperature, owing to predominantly lower altitudes on the west side. This difference in sensitivity suggests that basins on the east side of the Sierra Nevada have a more reliable water supply (as snow storage) than western-slope basins during warming trends.  相似文献   

5.
Abstract: Sierra Nevada snowmelt and runoff is a key source of water for many of California’s 38 million residents and nearly the entire population of western Nevada. The purpose of this study was to assess the impacts of expected 21st Century climatic changes in the Sierra Nevada at the subwatershed scale, for all hydrologic flow components, and for a suite of 16 General Circulation Models (GCMs) with two emission scenarios. The Soil and Water Assessment Tool (SWAT) was calibrated and validated at 35 unimpaired streamflow sites. Results show that temperatures are projected to increase throughout the Sierra Nevada, whereas precipitation projections vary between GCMs. These climatic changes drive a decrease in average annual streamflow and an advance of snowmelt and runoff by several weeks. The largest streamflow reductions were found in the mid‐range elevations due to less snow accumulation, whereas the higher elevation watersheds were more resilient due to colder temperatures. Simulation results showed that decreases in snowmelt affects not only streamflow, but evapotranspiration, surface, and subsurface flows, such that less water is available in spring and summer, thus potentially affecting aquatic and terrestrial ecosystems. Declining spring and summer flows did not equally affect all subwatersheds in the region, and the subwatershed perspective allowed for identification for the most sensitive basins throughout the Sierra Nevada.  相似文献   

6.
ABSTRACT: Three processes were examined as causing snowpack changes in forest clearings. Two of the three contribute to increases and one counteracts by reducing snowpack. The two that increase snowpack are redistribution and decreased loss to interception. Snow evaporation from a clearing counteracts snowpack increases. Research has indicated that as vegetation density increases, so too does the loss to interception. As snow in the canopy reaches the limit that the canopy can hold (the threshold amount) evaporation increases. Aerodynamics of the forest canopy were studied as well. As timber is cut, wind patterns are disturbed, creating disruptions in the wind velocity gradient depositing snow in openings. This redistribution leads to an increased snow water equivalent and augments runoff. Snow evaporation was shown to increase proportionally with opening size. Evaporation offsets the water yield gains derived from forest cut. It was found that this offset is inclusive to the measurements of water yield changes in experimental forests. An optimal size of harvest block may be five tree heights in width as suggested by numerous studies.  相似文献   

7.
Recent legislation to initiate vegetation management in the Central Sierra hydrologic region of California includes a focus on corresponding changes in water yield. This served as the impetus for developing a combined geographic information system (GIS) and simulation assessment framework. Using the existing vegetation density condition, together with proposed rules for thinning to reduce fire risk, a set of simulation model inputs were generated for examining the impact of the thinning scenario on water yield. The approach allows results to be expressed as the mean and standard deviation of change in water yield for each 1-km2 map cell that is thinned. Values for groups of cells are aggregated for typical watershed units using area-weighted averaging. Wet, dry, and average precipitation years were simulated over a large region. Where snow plays an important role in hydrologic processes, the simulated change in water yield was less than 0.5% of expected annual runoff for a typical watershed. Such small changes would be undetectable in the field using conventional stream flow analysis. These results suggest that use of water yield increases to help justify forest-thinning activities or offset their cost will be difficult.  相似文献   

8.
A simple simulation model designed to monitor snow-packs of the central Sierra Nevada is described. The model estimates average snow water equivalent for rectangular subregions in the area. Static subregion characteristics, daily precipitation and mean and minimum air temperatures measured at three index stations are the only needed input values. A water balance technique simulates daily snowpack changes in each subregion. Reasonable basinwide water equivalent values are produced. The procedure should be useful for estimating snow water distribution in large mountainous watersheds.  相似文献   

9.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   

10.
ABSTRACT: The Truckee River is a vitally important water source for eastern California and western Nevada. It runs 100 miles from Lake Tahoe to Pyramid Lake in the Nevada desert and serves urban populations in greater Reno-Sparks and agricultural users in three Nevada counties. In the 1980s and 1990s, a number of state and local groups initiated projects which, taken collectively, have accomplished much to improve watershed management on the Truckee River. However, the task of writing a management plan for the entire watershed has not yet been undertaken. Key players in state, federal and local government agencies have instead chosen to focus specific improvement efforts on more manageable, achievable goals. The projects currently underway include a new agreement on reservoir operation, restoration of high priority sub-watersheds, public education and involvement, water conservation education, and water resource planning for the major urban population centers. The approach which has been adopted on the Truckee River continues to evolve as more and more people take an interest in the river's future. The many positive projects underway on the watershed are evaluated in terms of how well they meet the definition of the ambitious water resources strategy, “integrated watershed management.”  相似文献   

11.
The cumulative effects of forest management activities on water quality at a downstream point were monitored from 1972-1980 during development of a watershed for timber resources. Suspended sediment concentration and turbidity were measured at two hydrologic stations which bracketed a 10-km reach of the Middle Santiam River in the Western Cascades of Oregon as it flowed through an 8000-ha block of intensively managed forest land. Slope failures often accompany road building and harvesting in steep forested watersheds and pose the most serious threat to water quality. Although 180 km of road were constructed and 3400 ha of old-growth forests were harvested from slopes averaging over 60 percent, long-term changes in sediment yields remained undetectable during the period of measurement. The geologic characteristics of the basin and the road construction and maintenance techniques as prescribed by Oregon's forest practice regulations helped to minimize the occurrence of slope failures so that long-term changes in suspended sediment export rates did not occur. Throughout the nine-year measurement period, seven slope failures which added sediment directly to streams produced measurable short-term responses at the downstream sampling location, but these erosion events were too small and too infrequent to produce long-term changes in sediment yield from the watershed.  相似文献   

12.
ABSTRACT: Three forest watersheds were isolated by roads in poorly drained flatwoods of Florida. After 12 months of baseline calibration the forest in one watershed was harvested and regenerated with minimum disturbance, in the second watershed with maximum disturbance from common practices, and in the third watershed left intact as a control. Water yields from the maximum treatments increased a significant 250 percent while that from the minimum treatments increased 117 percent as compared to the control. Weed vegetation remaining after the minimum treatment continued significant water use. The water yield increases lasted only for one year. Water quality was reduced by both treatments with the most effect immediately after the maximum disturbance. Absolute levels of suspended sediments, potassium, and calcium remained relatively low. The maximum treatment caused significant changes in net cation balances only for one year. The information shows relative little effect of silvicultural practices in flatwoods on water quality as compared to data from upland forests. Water yield increases may be manipulated by the degree of harvest and weed control practices.  相似文献   

13.
Western Washington and western Oregon comprise a water-rich region that has a very uneven annual distribution of both precipitation and streamflow. Highest demand for water coincides with lowest streamflow levels between July 1 and September 30 when less than 5 percent of annual water yield occurs. Increases in annual water yield in small, experimental watersheds in the region have ranged up to 600 mm after entire watersheds were logged and up to 300 mm in watersheds that were 25 to 30 percent logged. Most of the increase has occurred during the fall-winter rainy season, and yield increases have been largest during the wettest years. Estimated sustained increases in water yield from most large watersheds subject to sustained yield forest management are at best only 3-6 percent of unaugmented flows. Realistically, watersheds in this region will not be managed to produce more water. Water yield augmentation will continue to be only a small and variable by-product of logging. The utility of water yield augmentation is limited by its size and by its occurrence relative to the time of water demand. In some local areas, reduction of fog interception and drip or establishment of riparian phreatophytic hardwoods may reduce summer flows.  相似文献   

14.
ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera‐Plecoptera‐Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold‐water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality.  相似文献   

15.
ABSTRACT: Net precipitation under old growth Douglas fir forest in the Bull Run Municipal Watershed (Portland, Oregon) totaled 1739 mm during a 4Cbweek period, 387 mm more than in adjacent clearcut areas. Expressing data on a full water year basis and adjusting gross precipitation for losses due to rainfall interception suggest fog drip could have added 882 mm (35 in) of water to total precipitation during a year when precipitation measured 2160 mm in a rain gage in a nearby clearing. Standard rain gages installed in open areas where fog is common may be collecting up to 30 percent less precipitation than would be collected in the forest. Long term forest management (Le., timber harvest) in the watershed could reduce annual water yield and, more importantly, summer stream flow by reducing fog drip.  相似文献   

16.
ABSTRACT: About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long‐term annual actual evapotranspiration (ART) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables—annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual ART for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.  相似文献   

17.
ABSTRACT: Snow, one of Nature's greatest reservoirs, supplies most of the usable water in the Western United States. Reliable predictions of the quantity and timing of the release of this water are used in making management decisions involving irrigation, stock water and municipal water supplies, hydro-power generation, recreation, navigation, and pollution control Practically oriented research is vital for the proper development and management of this resource. In southwestern Idaho, the Northwest Watershed Research Center, ARS, USDA, is conducting intensive investigations for assessing snow Volumes, snow water content, and snow-melt over a watershed. Application of these research findings will result in better development and management of the water stored as snow in Nature's reservoir.  相似文献   

18.
ABSTRACT: Competition for water, concerns for maintaining ground water quality, and compliance with legislative action require quantification of the water resource for high elevation watersheds in the Sierra Nevada. However, meager hydroclimatic data frequently hinder runoff assessments needed for formulating water development policies, and the selection of watershed models for estimating the water resource is limited to those requiring a minimum of observational data. A climatic water budget model and an energy slope and aspect model are employed to estimate the water resource for a small watershed in Sierra Valley north of Lake Tahoe. The models employ different assumptions and computational procedures, but the total water available estimated by both models is very similar. Measured runoff is estimated satisfactorily by the models, but streamflow is not representative of the total water resource because a substantial portion of the available water enters the regional ground water system. This conclusion is supported by hydrologic and geochemical evidence, and ground water recharge is estimated to be at least as great as measured runoff during dry years and nearly twice as large during wet years.  相似文献   

19.
ABSTRACT: Previous reports based on climate change scenarios have suggested that California will be subjected to increased wintertime and decreased summertime streamflow. Due to the uncertainty of projections in future climate, a new range of potential climatological future temperature shifts and precipitation ratios is applied to the Sacramento Soil Moisture Accounting Model and Anderson Snow Model in order to determine hydrologic sensitivities. Two general circulation models (GCMs) were used in this analysis: one that is warm and wet (HadCM2 run 1) and one that is cool and dry (PCM run B06.06), relative to the GCM projections for California that were part of the Third Assessment Report of the Intergovernmental Panel on Climate Change. A set of specified incremental temperature shifts from 1.5°C to 5.0°C and precipitation ratios from 0.70 to 1.30 were also used as input to the snow and soil moisture accounting models, providing for additional scenarios (e.g., warm/dry, cool/wet). Hydrologic calculations were performed for a set of California river basins that extend from the coastal mountains and Sierra Nevada northern region to the southern Sierra Nevada region; these were applied to a water allocation analysis in a companion paper. Results indicate that for all snow‐producing cases, a larger proportion of the streamflow volume will occur earlier in the year. The amount and timing is dependent on the characteristics of each basin, particularly the elevation. Increased temperatures lead to a higher freezing line, therefore less snow accumulation and increased melting below the freezing height. The hydrologic response varies for each scenario, and the resulting solution set provides bounds to the range of possible change in streamflow, snowmelt, snow water equivalent, and the change in the magnitude of annual high flows. An important result that appears for all snowmelt driven runoff basins, is that late winter snow accumulation decreases by 50 percent toward the end of this century.  相似文献   

20.
ABSTRACT: Forest hydrology should be a mature science with routine use of hydrological procedures to evaluate the effect of past, current and proposed harvesting practices on water resources. It is not. However, water users are pressuring forest managers to exercise their role in managing forested watersheds for water supply. Most forest managers are poorly equipped to carry out this role. Forestry schools need to ensure that their graduates, whether employed in forest management positions or as specialists in watershed management, understand that all forestry operations may affect instream or downstream water users. Specialists in forest hydrology should be fully aware of the following: (1) climate and watershed characteristics influence streamflow in separate ways; (2) forestry practices produce changes in water yield and quality, and that only these changes need to be evaluated to estimate their effects; (3) watershed storage is a critical factor in evaluating the effects of harvesting on streamflow; and (4) the effect of harvest on one watershed cannot be extrapolated to another without consideration of the processes affected. Research is needed to assist watershed managers in applying models to watersheds for which climate and streamflow data are insufficient. Research is also needed to incorporate climate, streamflow and other data for hydrological models into geographic information systems. Joint research projects are needed to develop physical relationships between stream channel characteristics of importance to fisheries biologists and streamflow characteristics affected by forest harvest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号