首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Every year, more than 50,000 wildland fires affect about 500,000 ha of vegetation in southern European countries, particularly in wildland-urban interfaces (WUI). This paper presents a method to characterize and map WUIs at large scales and over large areas for wildland fire prevention in the South of France. Based on the combination of four types of building configuration and three classes of vegetation structure, 12 interface types were classified. Through spatial analysis, fire ignition density and burned area ratio were linked with the different types of WUI. Among WUI types, isolated WUIs with the lowest housing density represent the highest level of fire risk.  相似文献   

2.
Fire occurrences and their sources were monitored in Emas National Park, Brazil (17°49′–18°28′S; 52°39′–53°10′W) from June 1995 to May 1999. The extent of burned area and weather conditions were registered. Forty-five fires were recorded and mapped on a GIS during this study. Four fires occurred in the dry winter season (June–August; 7,942 ha burned), all caused by humans; 10 fires occurred in the seasonally transitional months (May and September) (33,386 ha burned); 31 fires occurred in the wet season, of which 30 were caused by lightning inside the park (29,326 ha burned), and one started outside the park (866 ha burned). Wet season lightning fires started in the open vegetation (wet field or grassy savanna) at a flat plateau, an area that showed significantly higher fire incidence. On average, winter fires burned larger areas and spread more quickly, compared to lightning fires, and fire suppression was necessary to extinguish them. Most lightning fires were patchy and extinguished primarily by rain. Lightning fires in the wet season, previously considered unimportant episodes, were shown to be very frequent and probably represent the natural fire pattern in the region. Lightning fires should be regarded as ecologically beneficial, as they create natural barriers to the spread of winter fires. The present fire management in the park is based on the burning of preventive firebreaks in the dry season and exclusion of any other fire. This policy does not take advantage of the beneficial effects of the natural fire regime and may in fact reduce biodiversity. The results presented here stress the need for reevaluating present policies and management procedures concerning fire in cerrado conservation areas.  相似文献   

3.
Wildland fire affects both public and private resources throughout the United States. A century of fire suppression has contributed to changing ecological conditions and accumulated fuel loads. Managers have used a variety of approaches to address these conditions and reduce the likelihood of wildland fires that may result in adverse ecological impacts and threaten communities. Public acceptance is a critical component of developing and implementing successful management programs. This study examines the factors that influence citizen support for agency fuel reduction treatments over time—particularly prescribed fire and mechanical vegetation removal. This paper presents findings from a longitudinal study examining resident beliefs and attitudes regarding fire management and fuels treatments in seven states: Arizona, Colorado, Oregon, Utah, Michigan, Minnesota, and Wisconsin. The study was implemented in two phases over a 6-year period using mail surveys to residents of communities adjacent to federal lands in each location. Questions replicated measures from the original project as well as some new items to allow a more in-depth analysis of key concepts. The study design enables comparisons over time as well as between locations. We also assess the factors that influence acceptance of both prescribed fire and mechanical vegetation removal. Findings demonstrate a relative stability of attitudes toward fuels management approaches over time and suggest that this acceptance is strongly influenced by confidence in resource managers and beliefs that the treatments would result in positive outcomes.  相似文献   

4.
Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100–1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.  相似文献   

5.
Anthropogenic fires in Africa are an ancient form of environmental disturbance, which probably have shaped the savanna vegetation more than any other human induced disturbance. Despite anthropogenic fires having played a significant role in savanna management by herders, previous ecological research did not incorporate the traditional knowledge of anthropogenic fire history. This paper integrates ecological data and anthropogenic fire history, as reconstructed by herders, to assess landscape and regional level vegetation change in northeastern Namibia. We investigated effects of fire frequency (i.e. <5, 5-10 and >10 years) to understand changes in vegetation cover, life form species richness and savanna conditions (defined as a ratio of shrub cover to herbaceous cover). Additionally, we analysed trends in the vegetation variables between different fire histories at the landscape and regional scales. Shrub cover was negatively correlated to herbaceous cover and herbaceous species richness. The findings showed that bush cover homogenisation at landscape and regional scales may suggest that the problem of bush encroachment was widespread. Frequent fires reduced shrub cover temporarily and promoted herbaceous cover. The effects on tree cover were less dramatic. The response to fire history was scale-independent for shrub, herbaceous and tree cover, but scale-dependent for the richness of grass and tree life forms. Fire history, and not grazing pressure, improved savanna conditions. The findings emphasise the need to assess effects of anthropogenic fires on vegetation change before introducing new fire management policies in savanna ecosystems of northeastern Namibia.  相似文献   

6.
Forest fires constitute one of the most serious environmental problems in several forested regions of India. In the Indian sub-continent, relatively few studies have focused on the assessment of biophysical and anthropogenic controls of forest fires at a landscape scale and the spatial aspects of these relationships. In this study, we used fire count data sets from satellite remote sensing data covering 78 districts over four different states of the Deccan Plateau, India, for assessing the underlying causes of fires. Spatial data for explanatory variables of fires pertaining to topography, vegetation, climate, anthropogenic and accessibility factors have been gathered corresponding with fire presence/absence. A logistic regression model was used to estimate the probability of the presence of fires as a function of the explanatory variables. Results for fire area estimates suggested that, of the total fires covering 47,043km(2) that occurred during the year 2000 for the entire Indian region, 29.0% occurred in the Deccan Plateau, with Andhra Pradesh having 13.5%, Karnataka 14.7%, Kerala 0.1%, and Tamilnadu 1.15%. Results from the logistic regression suggest that the strongest influences on the fire occurrences were the amount of forest area, biomass densities, rural population density (PD), average precipitation of the warmest quarter, elevation (ELE) and mean annual temperature (MAT). Among these variables, biomass density (BD) and average precipitation of the warmest quarter had the highest significance, followed by others. These results on the best predictors of forest fires can be used both as a strategic planning tool to address broad scale fire risk concerns, and also as a tactical guide to help forest managers to design fire mitigation measures at the district level.  相似文献   

7.
The Terai-Duar savanna and grasslands, which once extended along most of the Himalayan foothills, now only remain in a number of protected areas. Within these localities, grassland burning is a major issue, but data on frequency and distribution of fires are limited. Here, we analysed the incidence of active fires, which only occur during the dry season (Nov.–Mar.), within a significant area of Terai grasslands: the Manas National Park (MNP), India. We obtained locations of 781 fires during the 2000–2008 dry seasons, from the Fire Information for Resource Management System (FIRMS) that delivers global MODIS hotspot/fire locations using remote sensing and GIS technologies. Annual number of fires rose significantly from around 20 at the start of the study period to over 90 after 2002, with most (85%) detected between December and January. Over half of the fires occurred in tall grasslands, but fire density was highest in wetland and riverine vegetation, dry at the time. Most burning took place near rivers, roads and the park boundary, suggesting anthropogenic origins. A kernel density map of all recorded fires indicated three heavily burnt areas in the MNP, all within the tall grasslands. Our study demonstrates, despite some technical caveats linked to fire detection technology, which is improving, that remote fire data can be a practical tool in understanding fire concentration and burning temporal patterns in highly vulnerable habitats, useful in guiding management.  相似文献   

8.
9.
An ecological data base for the San Jacinto Mountains, California, USA, was used to construct a probability model of wildland fire occurrence. The model incorporates both environmental and human factors, including vegetation, temperature, precipitation, human structures, and transportation. Spatial autocorrelation was examined for both fire activity and vegetation to determine the specification of neighborhood effects in the model. Parameters were estimated using stepwise logistic regressions. Among the explanatory variables, the variable that represents the neighborhood effects of spatial processes is shown to be of great importance in the distribution of wildland fires. An important implication of this result is that the management of wildland fires must take into consideration neighborhood effects in addition to environmental and human factors. The distribution of fire occurrence probability is more accurately mapped when the model incorporates the spatial term of neighborhood effects. The map of fire occurrence probability is useful for designing large-scale management strategies of wildfire prevention.  相似文献   

10.
Potential increase in fire hazard as a result of timber harvesting is a concern of forest managers throughout the United States. Treating fuels can help reduce unacceptable fire hazards. To evaluate alternative fuel treatments, managers need to know their effects on fire hazard. A decision analysis approach to estimating fire hazard in terms of expected burned area was applied to a watershed in the Siskiyou National Forest (Oregon). Three treatment alternatives (do nothing and two levels of yarding unmerchantable material) were evaluated, and the effects of the treatments were projected over a 90-yr period. Initially, the effects of applying a treatment are small. After 50 years of treatment, the most intense alternative can be expected to show almost a 50% reduction in burned area compared to no treatment. The procedure also estimates burned are by fire size and fire intensity classes. Managers may find this useful for estimating expected fire effects associated with a particular fuel treatment regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号