首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha−1 year−1 and 0.04 Mg N ha−1 year−1 following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2–0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25–0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal land with coarse-texture soils can significantly increase SOC and N stocks, and improve soil structure.  相似文献   

2.
The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam.  相似文献   

3.
The myth of nitrogen fertilization for soil carbon sequestration   总被引:9,自引:0,他引:9  
Intensive use of N fertilizers in modern agriculture is motivated by the economic value of high grain yields and is generally perceived to sequester soil organic C by increasing the input of crop residues. This perception is at odds with a century of soil organic C data reported herein for the Morrow Plots, the world's oldest experimental site under continuous corn (Zea mays L.). After 40 to 50 yr of synthetic fertilization that exceeded grain N removal by 60 to 190%, a net decline occurred in soil C despite increasingly massive residue C incorporation, the decline being more extensive for a corn-soybean (Glycine max L. Merr.) or corn-oats (Avena sativa L.)-hay rotation than for continuous corn and of greater intensity for the profile (0-46 cm) than the surface soil. These findings implicate fertilizer N in promoting the decomposition of crop residues and soil organic matter and are consistent with data from numerous cropping experiments involving synthetic N fertilization in the USA Corn Belt and elsewhere, although not with the interpretation usually provided. There are important implications for soil C sequestration because the yield-based input of fertilizer N has commonly exceeded grain N removal for corn production on fertile soils since the 1960s. To mitigate the ongoing consequences of soil deterioration, atmospheric CO(2) enrichment, and NO(3)(-) pollution of ground and surface waters, N fertilization should be managed by site-specific assessment of soil N availability. Current fertilizer N management practices, if combined with corn stover removal for bioenergy production, exacerbate soil C loss.  相似文献   

4.
Soil organic matter (SOM) is essential for sustaining food production and maintaining ecosystem services and is a vital resource base for storing C and N. The impact of long-term use of synthetic fertilizer N on SOM, however, has been questioned recently. Here we tested the hypothesis that long-term application of N results in a decrease in SOM. We used data from 135 studies of 114 long-term experiments located at 100 sites throughout the world over time scales of decades under a range of land-management and climate regimes to quantify changes in soil organic carbon (SOC) and soil organic nitrogen (SON). Published data of a total of 917 and 580 observations for SOC and SON, respectively, from control (unfertilized or zero N) and N-fertilized treatments (synthetic, organic, and combination) were analyzed using the SAS mixed model and by meta-analysis. Results demonstrate declines of 7 to 16% in SOC and 7 to 11% in SON with no N amendments. In soils receiving synthetic fertilizer N, the rate of SOM loss decreased. The time-fertilizer response ratio, which is based on changes in the paired comparisons, showed average increases of 8 and 12% for SOC and SON, respectively, following the application of synthetic fertilizer N. Addition of organic matter (i.e., manure) increased SOM, on average, by 37%. When cropping systems fluctuated between flooding and drying, SOM decreased more than in continuous dryland or flooded systems. Flooded rice ( L.) soils show net accumulations of SOC and SON. This work shows a general decline in SOM for all long-term sites, with and without synthetic fertilizer N. However, our analysis also demonstrates that in addition to its role in improving crop productivity, synthetic fertilizer N significantly reduces the rate at which SOM is declining in agricultural soils, worldwide.  相似文献   

5.
Experiments to document the long-term effects of clipping management on N requirements, soil organic carbon (SOC), and soil organic nitrogen (SON) are difficult and costly and therefore few. The CENTURY ecosystem model offers an opportunity to study long-term effects of turfgrass clipping management on biomass production, N requirements, SOC and SON, and N leaching through computer simulation. In this study, the model was verified by comparing CENTURY-predicted Kentucky bluegrass (Poa pratensis L.) clipping yields with field-measured clipping yields. Long-term simulations were run for Kentucky bluegrass grown under home lawn conditions on a clay loam soil in Colorado. The model predicted that compared with clipping-removed management, returning clippings for 10 to 50 yr would increase soil C sequestration by 11 to 25% and nitrogen sequestration by 12 to 28% under a high (150 kg N ha(-1) yr(-1) nitrogen (N) fertilization regime, and increase soil carbon sequestration by 11 to 59% and N sequestration by 14 to 78% under a low (75 kg N ha(-1) yr(-1)) N fertilization regime. The CENTURY model was further used as a management supporting system to generate optimal N fertilization rates as a function of turfgrass age. Returning grass clippings to the turf-soil ecosystem can reduce N requirements by 25% from 1 to 10 yr after turf establishment, by 33% 11 to 25 yr after establishment, by 50% 25 to 50 yr after establishment, and by 60% thereafter. The CENTURY model shows potential for use as a decision-supporting tool for maintaining turf quality and minimizing negative environmental impacts.  相似文献   

6.
To ensure regional self-sufficiency and adequate rural livelihoods in the North China Plain (NCP), tremendous efforts were made over the last two decades by the Chinese government to raise the productivity of crops, despite increasing pressure on the land caused by a growing population. Emphasis was placed on high external input use, especially for wheat, maize and cotton, ignoring the particularities and limitations of the natural resource base. This study assesses the sustainability of current soil fertility management practices on the basis of selected location-specific indicators, such as fertilizer use, soil pH, soil organic matter content, levels of nitrogen (N), phosphorus (P) and potassium (K) in the soil, and identifies determining factors of the yield and environmental impacts of inputs use. Data used for the analysis were gathered from soil tests, groundwater and chive plant tests, household surveys, and statistical yearbooks. Stepwise multiple regression analysis is applied to determine factors affecting the yields. The study revealed unbalanced use of nutrients. Organic fertilizers (manure, crop residues) and K are insufficiently applied, whereas N and P are considerably overused in comparison with recommended doses. The intensive cropping in the area using high-input technologies -particularly fertilizer- has resulted in a remarkable general enhancement of crop productivity and improvement of soil fertility over the years. The yield of wheat and maize has increased 173 and 180 kg ha(-1) annually from 1982 to 2000, respectively and soil fertility status also improved over the years and the values of the selected indicators are within the borderline for sustainability. Irrigation water, FYM application, and total labor used during the cultivation season (with the exception of cotton and chive) for production are the main factors determining the yields of four major crops under study, while popularly and overly used N did not appear to be a significant factor affecting the yield. Its overuse, however, leads to leaching of nitrate into groundwater and nitrate enrichment of vegetables. Of 20 groundwater samples, 16 showed nitrate levels between 55 and 180 mg l(-1), which exceeds recommendations for drinking water (相似文献   

7.
Supplying freshwater is one of the important methods to help restore degraded wetlands. Changes in soil properties and plant community biomass were evaluated by comparing sites with freshwater treatment versus reference sites following freshwater addition to wetlands of the Yellow River Delta for 7 years. The results indicated that soil organic carbon (SOC) was significantly increased in all wetland sites that were treated with freshwater compared to the reference sites. The treatment wetlands had greater total nitrogen (TN), lower pH and electrical conductivity and higher water content in the soil compared to the reference wetlands. In general, the upper soil layer (0-20 cm) had greater SOC than the lower soil layer (20-40 cm). The increase of SOC in the freshwater reintroduction wetlands was higher in the Suaeda salsa plant community (mean ± standard error) (6.89 ± 0.63 g/kg) and Phragmites communis plant community (4.11 ± 0.12 g/kg) than in the Tamarix chinensis plant community (1.40 ± 0.31 g/kg) in the upper soil layer. The differences were especially marked between the treated and reference wetlands for SOC and TN in the P. communis plant communities. The C:N ratio of the soil was significantly greater in the treated compared to the reference wetlands for the S. salsa plant community. Although the C: N ratios increased after treatment, they were all <25 suggesting that N availability was not limiting soil organic matter decomposition. Our results indicate that freshwater addition and the concomitant increase in soil moisture content enhances the accumulation of SOC in the Yellow River Delta.  相似文献   

8.
Quantification of soil carbon (C) cycling as influenced by management practices is needed for C sequestration and soil quality improvement. We evaluated the 10-yr effects of tillage, cropping system, and N source on crop residue and soil C fractions at 0- to 20-cm depth in Decatur silt loam (clayey, kaolinitic, thermic, Typic Paleudults) in northern Alabama, USA. Treatments were incomplete factorial combinations of three tillage practices (no-till [NT], mulch till [MT], and conventional till [CT]), two cropping systems (cotton [Gossypium hirsutum L.]-cotton-corn [Zea mays L.] and rye [Secale cereale L.]/cotton-rye/cotton-corn), and two N fertilization sources and rates (0 and 100 kg N ha(-1) from NH(4)NO(3) and 100 and 200 kg N ha(-1) from poultry litter). Carbon fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). Crop residue varied among treatments and years and total residue from 1997 to 2005 was greater in rye/cotton-rye/cotton-corn than in cotton-cotton-corn and greater with NH(4)NO(3) than with poultry litter at 100 kg N ha(-1). The SOC content at 0 to 20 cm after 10 yr was greater with poultry litter than with NH(4)NO(3) in NT and CT, resulting in a C sequestration rate of 510 kg C ha(-1) yr(-1) with poultry litter compared with -120 to 147 kg C ha(-1) yr(-1) with NH(4)NO(3). Poultry litter also increased PCM and MBC compared with NH(4)NO(3). Cropping increased SOC, POC, and PCM compared with fallow in NT. Long-term poultry litter application or continuous cropping increased soil C storage and microbial biomass and activity compared with inorganic N fertilization or fallow, indicating that these management practices can sequester C, offset atmospheric CO(2) levels, and improve soil and environmental quality.  相似文献   

9.
High nitrate (NO3-N) concentrations in Iowa rivers have been linked to areas of intensive row crop production, but they have not been experimentally linked to specific management practices used during row crop production. This study demonstrates how the late-spring test for soil NO3-N and the end-of-season test for cornstalk NO3-N can be used to measure N sufficiency levels across many fields and how the results can be used to evaluate management practices within a watershed. More than 3200 soil and cornstalk samples were collected over a 12-yr period from fields planted to corn (Zea mays L.) and already fertilized by farmers using their normal practices. Results showed that early-season rainfall and associated N losses were major factors affecting N concentrations in soils and cornstalks. Evidence for NO3-N movement from fields to rivers was provided by an inverse relationship between annual means for NO3-N concentrations in soils and rivers. Because these losses can be avoided by delaying N applications, the practice of applying N several weeks or months before plants grow was linked to inefficient use of fertilizer and manure N by crops. Results of the study demonstrate how aggregate analyses of soil and cornstalk samples collected across many farms and years make it possible to identify the major factors affecting N management outcomes and, therefore, N management practices that are likely to produce the best outcomes within a watershed or region. This approach seems to have unique potential to interrelate the management practices of farmers, the efficiency of N fertilization, and NO3-N concentrations in rivers.  相似文献   

10.
The application of anaerobically processed animal manure to maintain adequate levels of organic matter in arid soils is becoming a common practice. The purpose of this study was to characterize two farm manure products as compared with municipal waste compost (MWC). The anaerobic processing to obtain a biogas manure (BM) product was much faster (25 d) than the aerobic composting of farmyard manure (FYM) (90 d). Drying by three different methods (solar-drying, vacuum-drying at 45 degrees C, and freeze-drying) did not affect the quality of BM. Based on the chemical characteristics, FYM and BM products were comparable, and, containing less ash (30%) and heavy metals (50 mg Pb kg(-1)), seemed superior to MWC that contained 65% ash and 108 mg Pb kg(-1). On the other hand, MWC had higher C content (69.9%), lower acidity (15.04 mol kg(-1)), and higher exothermic peaks (300-460 degrees C) than BM and FYM (50% C, 20 mol kg(-1), and 275-450 degrees C, respectively), thus showing a greater extent of humification. Also, when the organic materials were incubated with arid soils and monitored for mean residence times (MRT), MWC was slightly more resistant to decomposition (MRT 175-180 d) than BM or FYM (MRT 161-166 d). The observed differences, however, were too small to dismiss any of the products as a valuable material for land applications to improve soil quality. In view of the results obtained, MWC may be considered an adequate substitute for BM or FYM, whenever the latter are in short supply.  相似文献   

11.
Agricultural soils are responsible for the majority of nitrous oxide (N(2)O) emissions in the USA. Irrigated cropping, particularly in the western USA, is an important source of N(2)O emissions. However, the impacts of tillage intensity and N fertilizer amount and type have not been extensively studied for irrigated systems. The DAYCENT biogeochemical model was tested using N(2)O, crop yield, soil N and C, and other data collected from irrigated cropping systems in northeastern Colorado during 2002 to 2006. DAYCENT uses daily weather, soil texture, and land management information to simulate C and N fluxes between the atmosphere, soil, and vegetation. The model properly represented the impacts of tillage intensity and N fertilizer amount on crop yields, soil organic C (SOC), and soil water content. DAYCENT N(2)O emissions matched the measured data in that simulated emissions increased as N fertilization rates increased and emissions from no-till (NT) tended to be lower on average than conventional-till (CT). However, the model overestimated N(2)O emissions. Lowering the amount of N(2)O emitted per unit of N nitrified from 2 to 1% helped improve model fit but the treatments receiving no N fertilizer were still overestimated by more than a factor of 2. Both the model and measurements showed that soil NO(3)(-) levels increase with N fertilizer addition and with tillage intensity, but DAYCENT underestimated NO(3)(-) levels, particularly for the treatments receiving no N fertilizer. We suggest that DAYCENT could be improved by reducing the background nitrification rate and by accounting for the impact of changes in microbial community structure on denitrification rates.  相似文献   

12.
The Indo‐Gangetic plain is characterized by intensive agriculture, largely by resource‐poor small and marginal farmers. Vast swathes of salt‐affected areas in the region provide both challenges and opportunities to bolster food security and sequester carbon after reclamation. Sustainable management of reclaimed soils via resource conservation strategies, such as residue retention, is key to the prosperity of the farmer, as well as increases the efficiency of expensive initiatives to further reclaim sodic land areas, which currently lay barren. After five years of experimentation on resource conservation strategies for rice‐wheat systems on partially reclaimed sodic soils of the Indo‐Gangetic region, we evaluated changes in different soil carbon pools and crop yield. Out of all resource conservation techniques which were tested, rice‐wheat crop residue addition (30% of total production) was most effective in increasing soil organic carbon (SOC). In rice, without crop residue addition (WCR), soils under zero‐tillage with transplanting, summer ploughing with transplanting and direct seeding with brown manuring showed a significant increase in SOC over the control (puddling in rice, conventional tillage in wheat). In these treatments relatively higher levels of carbon were attained in all aggregate fractions compared to the control. Soil aggregate sizes in meso (0.25‐2.0 mm) and macro (2‐8 mm) ranges increased, whereas micro (< 0.25 mm) fractions decreased in soils under zero‐till practices, both with and without crop residue addition. Direct seeding with brown manuring and zero tillage with transplanting also showed an increase of 135% and 95%, respectively, over the control in microbial biomass carbon, without crop residue incorporation. In zero tillage with transplanting treatment, both with and without crop residue showed significant increase in soil carbon sequestration potential. Though the changes in accrued soil carbon did not bring about significant differences in terms of grain yield, overall synthesis in terms of balance between yield and carbon sequestration indicated that summer ploughing with transplanting and zero tillage with transplanting sequestered significantly higher rates of carbon, yet yielded on par with conventional practices. These could be appropriate alternatives to immediately replace conventional tillage and planting practices for rice‐wheat cropping systems in the sodic soils of the Indo‐Gangetic region.  相似文献   

13.
This study investigated the effects of grassland conversion to croplands on soil organic carbon (SOC) in a typical grassland-dominated basin of the Inner Mongolia using direct field samplings. The results indicated that SOC contents decreased usually with increasing soil depth, with significant differences between the upper horizons (0-30cm) and the underlying horizons (30-100cm). Also, SOC densities decreased with an increase in the depth of soils. Average SOC densities in the upper horizons were 2.6-3.7 and 6.0-8.3kgCm(-2) for desert grassland-cropland sites (sites 1 and 2) and meadow-cropland sites (sites 3 and 4), respectively, with significant differences between grasslands and croplands (P<0.05). However, the SOC densities in the underlying horizons did not significantly differ between the land uses. The SOC densities up to 100cm depth were much higher in the meadow-cropland sites than in the desert grassland-cropland sites, reaching approximately 16 and 6kgCm(-2), respectively. The SOC: total nitrogen (TN) ratios were approximately 10, with no significant difference among the soil horizons of grasslands and croplands. The conversion of grasslands to croplands induced a slight loss of SOC, with a range of from -4% to 22% for the 0-100cm soil depth over about a 35-year period, in the temperate Inner Mongolia.  相似文献   

14.
Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets.  相似文献   

15.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   

16.
Following turfgrass establishment, soils sequester carbon (C) over time. However, the magnitude of this sequestration may be influenced by a range of climatic and soil factors. Analysis of home lawn turfgrass soils throughout the United States indicated that both climatic and soil properties significantly affected the soil organic carbon (SOC) concentration and pool to 15-cm depth. Soil sampling showed that the mean annual temperature (MAT) was negatively correlated with SOC concentration. Additionally, a nonlinear interaction was observed between mean annual precipitation (MAP) and SOC concentration with optimal sequestration occurring in soils receiving 60–70?cm of precipitation per year. Furthermore, soil properties also influenced SOC concentration. Soil nitrogen (N) had a high positive correlation with SOC concentration, as a 0.1?% increase in N concentration led to a 0.99?% increase in SOC concentration. Additionally, soil bulk density (ρb) had a curvilinear interaction with SOC concentration, with an increase in ρb indicating a positive effect on SOC concentration until a ρb of ~1.4–1.5?Mg?m?3 was attained, after which, inhibition of SOC sequestration occurred. Finally, no correlation between SOC concentration or pool was observed with texture. Based upon these results, highest SOC pools within this study are observed in regions of low MAT, moderate MAP (60–70?cm?year?1), high soil N concentration, and moderate ρb (1.4–1.5?Mg?m?3). In order to maximize the C storage capacity of home lawns, non C-intensive management practices should be used to maintain soils within these conditions.  相似文献   

17.
Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.  相似文献   

18.
The integrated terrestrial ecosystem C-budget model (InTEC) developed by Chen and co-workers has been used successfully to predict carbon dynamics of forests in Canada. It was tested here for forest soil organic carbon (SOC) density of China's northern temperate zone and southern subtropical zone. The results show that the simulated SOC density is highly correlated and in broad agreement with observations in Liping and in Changbaishan, representing the southern subtropical zone and the northern temperate zone in China, respectively. SOC density ranged from 2.2 to 11.2 kg/m(2) in Liping and from 3.4 to 14.8 kg/m(2) in Changbaishan. The correlation coefficients (r(2)) are 0.63 (N=16) and 0.76 (N=14) between the simulated and measured data in Liping and Changbaishan, respectively. The SOC densities under different vegetation types in Liping decrease in the order of mixed forest, broadleaf forest, Chinese fir, couch grass, and Chinese redpine, and in Changbaishan in the order of mixed forest, silver fir, larch forest, and birch forest.  相似文献   

19.
Regional patterns of soil organic carbon stocks in China   总被引:8,自引:0,他引:8  
Soil organic carbon (SOC) is of great importance in the global carbon cycle. Distribution patterns of SOC in various regions of China constitute a nation-wide baseline for studies on soil carbon changes. This paper presents an integrated and multi-level study on SOC stock patterns of China, and presents baseline SOC stock estimates by great administrative regions, river watersheds, soil type regions and ecosystem. The assignment is done by means of a recently completed 1: 1,000,000 scale soil database of China, which is the most detailed and reliable one in China at the present time. SOC densities of 7292 soil profiles collected across China in the middle of the 1980s were calculated and then linked to corresponding polygons in a digital soil map, resulting in a SOC Density Map of China on a 1: 1,000,000 scale, and a 1 km x 1 km grid map. Corresponding maps of administrative regions, river watersheds, soil types (ST), and ecosystems in China were also prepared with an identical resolution and coordinate control points, allowing GIS analyses. Results show that soils in China cover an area of 9.281 x 10(6)km(2) in total, with a total SOC stock of 89.14 Pg (1 Pg=10(15)g) and a mean SOC density of 96.0 t C/ha. Confidence limits of the SOC stock and density in China are estimated as [89.23 Pg, 89.08 Pg] and [96.143 t C/ha, 95.981 t C/ha] at 95% probability, respectively. The largest total SOC stock (23.60 Pg) is found in South-west China while the highest mean SOC density (181.9 t C/ha) is found in north-east China. The total SOC stock and the mean SOC density in the Yangtze river watershed are 21.05 Pg and 120.0 t C/ha, respectively, while the corresponding figures in the Yellow river watershed are 8.46 Pg and 104.3 t C/ha, respectively. The highest total SOC stocks are found in Inceptisols (34.39 Pg) with SOC density of 102.8 t C/ha. The lowest and highest mean SOC densities are found on Entisols (28.1 t C/ha), and on Histosols (994.728.1 t C/ha), respectively. Finally, the total SOC stock in shrub and forest ecosystem classes are 25.55 and 21.50 Pg, respectively; the highest mean SOC density (209.9 t C/ha) was recorded in the wetland ecosystem class and the lowest (29.0 t C/ha) in the desert ecosystem class. Among five forest ecosystem types, Evergreen conifer forest stores the highest SOC stock (6.81 Pg), and Deciduous conifer forest shows the highest SOC density (225.9 t C/ha). Figures of SOC stocks stratified by Administrative regions, river watersheds, soil types and ecosystem types presented in the study may constitute national-wide baseline for studies of SOC stock changes in various regions in the future.  相似文献   

20.
Phosphorus speciation in manure-amended alkaline soils   总被引:2,自引:0,他引:2  
Two common manure storage practices are stockpiles and lagoons. The manure from stockpiles is applied to soils in solid form, while lagoon manure is applied as a liquid. Soil amendment with manure in any form introduces a significant amount of phosphorus (P) that exists in both organic and inorganic forms. However, little is known about P speciation in manure stored under different conditions, or the subsequent forms when applied to soils. We used solution (31)P nuclear magnetic resonance (NMR) spectroscopy and conventional P fractionation and speciation methods to investigate P forms in dairy manure and liquid lagoon manure, and to study how long-term amendment with these manures influenced surface and subsurface soil P speciation. Our results show that the P forms in solid and lagoon manure are similar. About 30% of the total P was organic, mostly as orthophosphate monoesters. On a dry weight basis, total P was much higher in the solid manure. In the manure-amended soils the total P concentrations of the surface soils were similar, regardless of manure type. Total P in the subsurface soil was greater in the lagoon-manure-amended soil than the solid-manure-amended subsurface soil. However, the fraction of organic P was greater in the subsurface of the solid-manure-amended soil. The NMR results indicate that the majority of organic P in the soils is phytic acid, which is enriched in the surface soils compared with the subsurface soils. These results provide insight into P speciation and dynamics in manure-amended soils that will further increase our understanding on how best to manage manure disposal on soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号