首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 141 毫秒
1.
基于2015年~2017年的监测数据,分析了氮磷在阳澄湖内的空间分布以及时间变化规律,并采用综合营养状态指数法(TLI)评价了阳澄湖水体的富营养化状态。研究结果表明:①2015~2017年,阳澄湖TN浓度波动不大,但是TP浓度持续升高,特别是中湖和东湖,分别升高了81.7%和113.8%;除2017年外,TN、TP浓度均是西湖最高,东湖最低,2017年中湖TP浓度升至最高;阳澄西、中、东湖每年的TN/TP比较接近,且都逐年下降。②年内变化来看,TN浓度每年1~3月较高,7~9月较低,而TP浓度无明显季节变化规律;TN/TP每年1~4月较高,一般在30以上,每年5~10月较低,一般在7~30之间。③TLI值显示阳澄西湖的富营养化状态有所好转,而中湖、东湖的富营养化状态呈恶化趋势。三年中,西湖、中湖均处于轻度富营养状态,东湖2015年为中营养,2016和2017年转变为轻度富营养。  相似文献   

2.
为准确掌握杞麓湖外源入湖污染负荷,进行精准治污,降低水质富营养化程度,采用现场踏勘、实测、同倍比法对杞麓湖流域外源污染物进行了调查,结果显示其外源污染物一是通过5条主要入湖河流的径流携带进入;二是雨后通过农业坡面散流区直接汇入;三是通过湖滨农业排涝区的排涝排入;四是通过湖面降雨降尘的自然输入,入湖途径呈现出相似性和典型性特征。通过调查核算,2018年杞麓湖入湖河流区、湖滨农业排涝区、农业坡面散流区、湖面降雨降尘区总计排入杞麓湖的净污染负荷为:CODCr3632.04t、CODMn776.68t、TN921.96t、TP39.70t。以CODCr为例,湖滨农业排涝区、农业坡面散流区、湖面降雨降尘区、入湖河流区每平方千米入湖CODCr分别为52.07、24.09、11.53、7.54t,表明湖滨农业排涝区的污染治理应该引起高度重视,优先治理。该研究成果可向承担湖泊保护管理主体责任的政府和部门提供从“一湖之治”向“流域之治”转变的治理思路,也为政府在短期内改善杞麓湖富营养化现状和后期保证其得到持续改善提供...  相似文献   

3.
针对唐山南湖富营养化问题,对南湖补给水源及湖体水质进行监测与评价。监测结果表明:春季南湖水体中TN、TP含量均超过《地表水环境质量标准》中规定的Ⅴ类水质标准;Chla(叶绿素a)浓度呈增长趋势;补给水源对南湖水体营养物质的贡献大。富营养化评价结果表明:南湖水体水质在春季期间富营养化程度严重,应及时采取有效的生态修复工程措施对唐山南湖外源和内源加以防控,避免藻华暴发。  相似文献   

4.
四川升钟水库水质评价及污染负荷分析   总被引:2,自引:0,他引:2  
选取高锰酸盐指数(CODMn)、五日生化需氧量(BOD5)、总氮(TN)、总磷(TP)4项监测指标,采用单因干评价法、综合污染指数法、内梅罗污染指数法、模糊综合评价法及水质标识指数法对升钟水库2004~2010年水污染特征进行分析与评价,结果表明:水质标识指数法比较适合升钟水库水体富营养化评价;单因子水质标识指数显示,水库主要污染物为总氮(TN)、总磷(TP),基本呈现富营养状态;2008年水质最差,2010年水质达到Ⅱ类标准;7年Iwq的平均值Ave(Iwq)=3.393,Ave(Iwq)未达到国家Ⅱ类水质标准。近7年综合水质标识指数(Iwq)在不同时点上具有高-低演化规律,总体趋向好转。通过计算2006年N、P污染负荷,TN、TP入库主要源于水产养殖,其贡献率分别为:55%、82%,升钟水库TN、TP是合理容量的1.97~2.32倍。应严格控制水库网箱肥水养殖。研究结果对指导升钟水库水污染防治与水资源管理具有重要的意义。  相似文献   

5.
文章为评估青藏湖区湖泊氮赋存形态,于2013年8月对青藏湖区可鲁克湖共14个采样点进行了采样及分析,探讨了水体及表层沉积物中各形态氮的空间分布特征。结果表明,可鲁克湖上覆水中p(DTN)(溶解性总氮浓度)范围为0.46~1.14mg/L,平均值为0.72mg/L,全湖污染趋势从入湖到出湖,依次为人湖口处湖中心出湖口处;间隙水中p(DTN)范围为3.16~13.15mg/L,平均值为8.55mg/1,全湖入湖口处间隙水中各氮形态浓度值较低,全湖污染趋势依次为湖西北处出湖口处湖中心入湖口处;沉积物中w(TN)(总氮含量)为1 316.00~6 953.00mg/kg,平均值为3 816.21mg/kg,湖西北处、出湖口处湖泊沉积物污染最为严重。  相似文献   

6.
淄博田庄水库水质分布特征与富营养化评价   总被引:1,自引:0,他引:1  
根据田庄水库的自然地理和水文特征,作者选择7个监测点,定量监测了水库和入库河段的水质分布特征,并采用卡森水质营养状态指数法和特里指数法对水库富营养化情况进行综合评价。研究结果表明,在所有监测点中NH4^+-N、TN、TP均严重超标,田庄水库现状水体已经达到轻度富营养化水平;从入库、库区至出库的表层水体中,TP的浓度逐渐降低;除DO外,在水库的垂直剖面上,其他指标浓度随深度的增加呈增加的趋势。  相似文献   

7.
李燕  汪露  张敏  朱亮 《四川环境》2021,(2):103-115
为阐明洪泽湖底栖动物的群落结构及水质变化状况,采用生物多样性指数法、综合污染指数、CCA分析等方法,对洪泽湖的底栖动物群落结构空间布局及其水质状况进行了季度调查,探究环境因子对底栖动物生长的影响规律。结果表明:(1)底栖动物种类以甲壳纲、多毛纲、双壳纲为主;(2)CPI分析表明,TN、TP是洪泽湖主要的超地表水Ⅲ类水环境标准的项目,入湖过水区域水质污染高于其他区域,且春冬TN超标为主,夏秋TP超标为主;(3)典范对应分析显示,氨氮、透明度、叶绿素a是影响底栖动物分布的主要环境因素。研究表明洪泽湖底栖动物群落组成优势种主导格局显著,生物多样性不高,群落组成和水质状况受过水水体影响极大,生态系统保护和修复需加强对周边水域生态系统的关注,尤其是淮河水系。  相似文献   

8.
《油气田环境保护》2009,19(3):27-27
水体富营养化是指氮、磷等植物营养物质含量过多所引起的水质污染现象。当过量营养进入湖泊、水库、河口、海湾等缓流水体后,水生生物特别是藻类将大量繁殖,使水中溶解氧含量急剧下降,以致影响到鱼类等的生存。在自然条件下,湖泊从贫营养湖→营养湖→沼泽→陆地的演变过程极为缓慢;人类的活动将大量工业废水和生活污水以及农田径流中的植物营养物质排入湖泊等水体后,将大大加速水体的富营养化进程。水体富营养化后,由于浮游生物大量繁殖,往往呈现蓝色、红色、棕色、乳白色等。这种现象在江河湖泊中称为水华,在海中则叫做赤潮。  相似文献   

9.
网络版摘要     
白洋淀夏季叶绿素a与环境因子的相关性研究 白洋淀 草型湖泊 叶绿素a 环境因子 相关性 采用回归统计方法分析白洋淀水产养殖区水质监测数据,研究白洋淀浅水草型湖泊夏季水体叶绿素a与环境因子的相关性,建立相应的回归方程。研究表明,白洋淀浅水草型湖泊水体叶绿素a含量与水温、pH、DO、COD、高锰酸盐指数呈显著正相关;叶绿素a与NH4^+-N、NO3^-/-N呈负相关,与NO2/-N无明显相关,与TN无显著正相关;而叶绿素a与TP呈一定的正相关,白洋淀浅水草型湖泊可能是磷限制性湖泊。  相似文献   

10.
为研究饮马河流域长春段水质污染现状和污染负荷演变特征,以饮马河流域长春段的五个国考断面为水质监测点,通过对国考断面水体水质中含有的COD、NH3-N、TP浓度的检测分析,研究区域的水质污染现状和不同水期对污染负荷的影响规律,同时对2020年各考核断面的污染负荷进行估算。经估算,在2020年,计算单元总的COD负荷年排放量约为27503.22 t/a,NH3-N负荷年排放量约为2769.39 t/a,TP负荷年排放量约为485.65 t/a;其中,COD负荷的主要污染来源为城市径流,占比约为40.12%,NH3-N负荷的主要污染来源为农田径流,占比约为48.16%,TP负荷的主要污染来源为农田径流,占比约为46.07%。研究结果表明,砖瓦窑桥、刘珍屯、靠山南楼、十三家子大桥等断面水环境中COD、NH3-N、TP年均浓度超过了水质考核标准;不同水期对饮马河大桥断面污染负荷的影响较小,枯水期对其他断面污染负荷的影响占主要贡献。  相似文献   

11.
Cyanobacterial blooms in Lake Taihu occurred at the end of April 2007 and had crucial impacts on the livelihood of millions of people living there. Excessive nutrients may promote bloom formation. Atmospheric nitrogen (N) and phosphorus (P) deposition appears to play an important role in algal bloom formation. Bulk deposition and rain water samples were collected respectively from May 1 to November 30, 2007, the period of optimal algal growth, to measure the bulk atmospheric deposition rate, wet deposition rate, and dry deposition rate for total nitrogen (TN; i.e., all species of nitrogen), and total phosphorus (TP; i.e., all species of phosphorus), in northern Lake Taihu, China. The trends of the bulk atmospheric deposition rate for TN and the wet deposition rate for TN showed double peaks during the observation period and distinct influence with plum rains and typhoons. Meanwhile, monthly bulk atmospheric deposition rates for TP showed little influence of annual precipitation. However, excessive rain may lead to high atmospheric N and P deposition rates. In bulk deposition samples, the average percentage of total dissolved nitrogen accounting for TN was 91.2% and changed little with time. However, the average percentage of total dissolved phosphorus accounting for TP was 65.6% and changed substantially with time. Annual bulk atmospheric deposition rates of TN and TP during 2007 in Lake Taihu were estimated to be 2,976 and 84 kg km−2 a−1, respectively. The results showed decreases of 34.4% and 78.7%, respectively, compared to 2002–2003. Annual bulk deposition load of TN for Lake Taihu was estimated at 6,958 t a−1 in 2007 including 4,642 t a−1 of wet deposition, lower than the values obtained in 2002–2003. This may be due to measures taken to save energy and emission control regulations in the Yangtze River Delta. Nevertheless, high atmospheric N and P deposition loads helped support cyanobacterial blooms in northern Lake Taihu during summer and autumn, the period of favorable algal growth.  相似文献   

12.
In order to study system responses of Falls of the Neuse Reservoir (Falls Lake) to varied nutrient loadings, a coupled three-dimensional hydrodynamic and eutrophication model was applied. The model was calibrated using 2005 and 2006 intensive survey data, and validated using 2007 survey data. Compared with historical hydrological records, 2005 and 2007 were considered as dry years and 2006 was recognized as a normal year. Relatively higher nutrient fluxes from the sediment were specified for dry year model simulations. The differences were probably due to longer residence time and hence higher nutrient retention rate during dry years in Falls Lake. During the normal year of 2006, approximately 70% of total nitrogen (TN) and 80% of total phosphorus (TP) were delivered from the tributaries; about 20% (TN and TP) were from the sediment bottom. During the dry years of 2005 and 2007, the amount of TN released from sediment was equivalent to that introduced from the tributaries, indicating the critical role of nutrient recycling within the system in dry years. The model results also suggest that both nitrogen and phosphorus are limiting phytoplankton growth in Falls Lake. In the upper part of the lake where high turbidity was observed, nitrogen limitation appeared to dominate. Scenario model runs also suggest that great nutrient loading reductions are needed for Falls Lake to meet the water quality standard.  相似文献   

13.
Determining reference concentrations in rivers and streams is an important tool for environmental management. Reference conditions for eutrophication-related water variables are unavailable for Brazilian freshwaters. We aimed to establish reference baselines for São Paulo State tropical rivers and streams for total phosphorus (TP) and nitrogen (TN), nitrogen-ammonia (NH4 +) and Biochemical Oxygen Demand (BOD) through the best professional judgment and the trisection methods. Data from 319 sites monitored by the São Paulo State Environmental Company (2005 to 2009) and from the 22 Water Resources Management Units in São Paulo State were assessed (N = 27,131). We verified that data from different management units dominated by similar land cover could be analyzed together (Analysis of Variance, P = 0.504). Cumulative frequency diagrams showed that industrialized management units were characterized by the worst water quality (e.g. average TP of 0.51 mg/L), followed by agricultural watersheds. TN and NH4 + were associated with urban percentages and population density (Spearman Rank Correlation Test, P < 0.05). Best professional judgment and trisection (median of lower third of all sites) methods for determining reference concentrations showed agreement: 0.03 &; 0.04 mg/L (TP), 0.31 &; 0.34 mg/L (TN), 0.06 &; 0.10 mg-N/L (NH4 +) and 2 &; 2 mg/L (BOD), respectively. Our reference concentrations were similar to TP and TN reference values proposed for temperate water bodies. These baselines can help with water management in São Paulo State, as well as providing some of the first such information for tropical ecosystems.  相似文献   

14.
Suplee, Michael W., Vicki Watson, Walter K. Dodds, and Chris Shirley, 2012. Response of Algal Biomass to Large‐Scale Nutrient Controls in the Clark Fork River, Montana, United States. Journal of the American Water Resources Association (JAWRA) 48(5): 1008‐1021. DOI: 10.1111/j.1752‐1688.2012.00666.x Abstract: Nutrient pollution is an ongoing concern in rivers. Although nutrient targets have been proposed for rivers, little is known about long‐term success of programs to decrease river nutrients and algal biomass. Twelve years of summer data (1998‐2009) collected along 383 km of the Clark Fork River were analyzed to ascertain whether a basin‐wide nutrient reduction program lowered ambient total nitrogen (TN) and total phosphorus (TP) concentrations, and bottom‐attached algal biomass. Target nutrient and algal biomass levels were established for the program in 1998. Significant declines were observed in TP but not TN along the entire river. Downstream of the city of Missoula, TP declined below a literature‐derived TP saturation breakpoint and met program targets after 2005; TN was below targets since 2007. Algal biomass also declined significantly below Missoula. Trends there likely relate to the city’s wastewater facility upgrades, despite its 20% population increase. Upstream of Missoula, nutrient reductions were less substantial; still, TP and TN declined toward saturation breakpoints, but no significant reductions in algal biomass occurred, and program targets were not met. The largest P‐load reduction to the river was from a basin‐wide phosphate laundry detergent ban set 10 years before, in 1989. We document that nutrient reductions in rivers can be successful in controlling algal biomass, but require achievement of concentrations below saturation and likely close to natural background.  相似文献   

15.
Tile drainage water from agricultural fields commonly exceeds environmental guidelines for phosphorus (P) in rivers and streams. The loss of P through artificial drainage is spatially and temporally variable, and is related to local factors. This study characterizes variability in total P (TP) and soluble reactive P (SRP) concentrations in weekly drainage samples from 39 agricultural fields in Nova Scotia, Canada, from April 2002 through December 2003. We examined connections between P concentrations and the factors: (i) soil texture; (ii) discharge flow rate; (iii) soil test P (STP); (iv) manure type; and (v) crop cover. Generally, variability between fields and samples was great, and fields with standard deviations exceeding the mean for TP, SRP, and flow rate were 71, 54, and 79%, respectively. It was evident that poultry and swine manure contributed to high STPs, and to constantly high TP concentrations with high proportions of SRP. Concentrations varied from week to week, and particularly in April, May, October, and November when the greatest TP, SRP, and flow rate averages were measured. Mean TP concentrations exceed the USEPA (1994) TP guideline of 0.10 mg L(-1) at 82% of the fields, and periodically concentrations more than 10 times, and occasionally more than 50 times higher than the guideline were found. The proportion of SRP in TP had a tendency to be higher when TP levels were high in coarse textured soils. In Nova Scotia, dairy manure is most often applied on permanent cover crops, which did not show as much P concentration variability as crop rotations. Daily or hourly observation of short-term increases in P concentrations related to the described factors would help to characterize the changes in P concentrations observed during frequent heavy drainage flow events.  相似文献   

16.
Nonpoint-source pollution and water body eutrophication have become increasing concerns for scientists and policymakers. Nitrogen and phosphorus affect environmental pollution, especially lake eutrophication. To assess the environmental risk of soil total nitrogen (TN) and total phosphorus (TP) pollution, a typical ecological unit of Dongting Lake plain was selected as the experimental site. To verify the stationary of the data, a moving windows technique was adopted. Our results showed that Box-Cox transformation achieved normality in the data set and dampened the effect of outliers. The best theoretical model for semivariogram of TN and TP was a spherical model. The ordinary kriging estimates of TN and TP concentrations were mapped. The integrative comparisons of semivariogram parameters with different trends to the kriging prediction errors of TN and TP indicated that the two-order trend is preferable. Kriging SDs provided valuable information that will increase the accuracy of TN and TP mapping. The probability kriging method is useful to assess the risk of N and P pollution by providing the conditional probability of N and P concentrations exceeding the threshold concentrations of 3.2 and 1.05 g/kg, respectively. The probability distribution of TN and TP at different levels will be helpful to conduct risk assessment, optimize fertilization, and control the pollution of N and P.  相似文献   

17.
以2012年4月至10月的水质监测数据为基础,分析了凡河榛子岭水库上游河段水体的水质状况。结果表明:仅夹河厂断面9月监测的水质符合Ⅲ类水质要求,其余各月3个断面监测的水质均超出Ⅴ类水质标准,超标项目主要是总氮、氨氮和总磷;各监测断面水质除总氮、氨氮和总磷超标外,其他项目基本达到Ⅲ类水质标准。凡河榛子岭水库上游河段丰水期各监测项目的浓度值明显大于平水期和枯水期时期。导致水质超标的原因主要是农村面源污染。  相似文献   

18.
ABSTRACT: Five types of land use/land covers in the West Tiaoxi watershed of China were studied for nutrient losses in artificial rainstorm runoff. A self‐designed rainfall simulator was used. In situ rainfall simulations were used to: (1) compare the concentrations of nitrogen and phosphorous in different land use/land covers and (2) evaluate the flux of nitrogen and phosphorous export from runoff and sediment in various types of land use/land covers. Three duplicated experiments were carried out under rain intensity of 2 mm/min, each lasting 32 minutes on a 3 m2 plot. Characteristics of various species of nitrogen and phosphorous in runoff and sediment were investigated. The results showed that the concentrations of total nitrogen (TN) and total phosphorous (TP) were greatest in runoff from mulberry trees and smallest from pine forest. The TN and TP export was mainly from suspended particulate in runoff. TN and TP exports from the top 10 cm layer of five types of land use/land covers were estimated as high as 4.66 to 9.40 g/m2 and 2.57 to 4.89 g/m2, respectively, of which exports through sediment of runoff accounted for more than 90 percent and 97 percent. The rate of TN and TP exports ranged from 2.68 to approximately 14.48 and 0.45 to approximately 4.11 mg/m2/min in runoff; these rates were much lower than those of 100.01 to approximately 172.67 and 72.82 to approximately 135.96 mg/m2/min in the runoff sediment.  相似文献   

19.
We evaluated the relationships between landscape characteristics and lake water quality in receiving waters by regressing four water quality responses on landscape variables that were measured for whole watersheds and three different buffer distances (30, 60, and 120 m). Classical percolation theory was used to conceptualize nutrient pathways and to explain nonlinear responses. The response variables were total nitrogen (TN), total phosphorus (TP), chlorophyll-a (Chl-a), and Secchi transparency (SD). Landscape data were obtained from satellite image-derived maps of 130 watersheds in Iowa using geographic information systems software. We developed regression models with a stepwise protocol selecting the optimal number of significant explanatory variables. Configuration variables such as contagion, the cohesion of cropland and urban land, and the aggregation index of forest were very important and more important than variables assessing landscape composition (e.g., percentage farmland). Whole watershed models predicted between 15 and 67% of the variability in TN, TP, Chl-a, and SD. Proximity-explicit data offered only slightly improved statistical power over land cover data derived from the entire watershed for variables TN, Chl-a. and SD, but not for TP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号