首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proper grazing management practices can generate corresponding compensatory effects on plant community production, which may reduce inter-annual variability of productivity in some grassland ecosystems. However, it remains unclear how grazing influences plant community attributes and the variability of standing crop. We examined the effects of sheep grazing at four stocking rate treatments [control, 0 sheep ha?1 month?1; light (LG), 0.15 sheep ha?1 month?1; moderate (MG), 0.30 sheep ha?1 month?1; and heavy (HG), 0.45 sheep ha?1 month?1] on standing crop at the community level and partitioned by species and functional groups, in the desert steppe of Inner Mongolia, China. The treatments were arranged in a completely randomized block design over a 9-year period. Standing crop was measured every August from 2004 to 2012. Peak standing crop decreased (P < 0.05) with increasing stocking rate; peak standing crop in the HG treatment decreased 40 % compared to the control. May–July precipitation explained at least 76 % of the variation in peak standing crop. MG and HG treatments resulted in a decrease (P < 0.05) in shrubs, semi-shrubs, and perennials forbs, and an increase (P < 0.05) in perennial bunchgrasses compared to the control. The coefficients of variation at plant functional group and species level in the LG and MG treatments were lower (P < 0.05) than in the control and HG treatments. Peak standing crop variability of the control and HG community were greatest, which suggested that LG and MG have greater ecosystem stability.  相似文献   

2.
Extending livestock grazing to the steep slopes has led to unstable grazing systems in the East African Highlands, and new solutions and approaches are needed to ameliorate the current situation. This work was aimed at studying the effect of livestock grazing on plant attributes and hydrological properties. The study was conducted from 1996 to 2000 at the International Livestock Research Institute at Debre Ziet Research Station. Two sites were selected: one at 0–4% slope, and the other at 4–8% slope. The treatments were: (1) no grazing (control); (2) light grazing, 0.6 animal unit months per hectare (aum/ha); (3) moderate grazing, 1.8 aum/ha; (4) heavy grazing, 3.0 aum/ha; (5) very heavy grazing, 4.2 aum/ha; (6) initially plowed and continuously very heavily grazed, 4.2 aum/ha. The result showed that species richness, infiltration rate, bare ground, and soil loss significantly varied with grazing pressure. Species richness was higher in grazed plots compared to nongrazed plots. Biomass yield improved on heavily grazed plots as cow dung accumulated over years. Cynodon dactylon plant species persisted with livestock grazing pressure in both sites. Infiltration rate improved and soil erosion declined in all treatments after the first year.  相似文献   

3.
The USDA’s Conservation Reserve Program (CRP) has predominantly used only a few species of dominant prairie grasses (CP2 practice) to reduce soil erosion, but recently has offered a higher diversity planting practice (CP25) to increase grassland habitat quality. We quantified plant community composition in CP25 and CP2 plantings restored for 4 or 8 years and compared belowground properties and processes among restorations and continuously cultivated soils in southeastern Nebraska, USA. Relative to cultivated soils, restoration increased soil microbial biomass (P = 0.033), specifically fungi (P < 0.001), and restored soils exhibited higher rates of carbon (C) mineralization (P = 0.010). High and low diversity plantings had equally diverse plant communities; however, CP25 plantings had greater frequency of cool-season (C3) grasses (P = 0.007). Older (8 year) high diversity restorations contained lower microbial biomass (P = 0.026), arbuscular mycorrhizal fungi (AMF) biomass (P = 0.003), and C mineralization rates (P = 0.028) relative to 8 year low diversity restorations; older plantings had greater root biomass than 4 year plantings in all restorations (P = 0.001). Low diversity 8 year plantings contained wider root C:N ratios, and higher soil microbial biomass, microbial community richness, AMF biomass, and C mineralization rate relative to 4 year restorations (P < 0.050). Net N mineralization and nitrification rates were lower in 8 year than 4 year high diversity plantings (P = 0.005). We attributed changes in soil C and N pools and fluxes to increased AMF associated with C4 grasses in low diversity plantings. Thus, reduced recovery of AMF in high diversity plantings restricted restoration of belowground microbial diversity and microbially-mediated soil processes over time.  相似文献   

4.
Understanding the problems of grazing land in vertisol areas and seeking long-lasting solutions is the central point where mixed crop livestock is the second stay for the majority of the population. In order to understand this, the current study was conducted at two sites, one with 0–4% slope and the other with 4–8% slope at Ginchi watershed, 80 km west of Addis Ababa, Ethiopia. The specific objectives of the study were to quantify changes in plant species richness, biomass, plant cover, and soil physical and hydrological properties. The grazing regimes were: moderate grazing (regulated), heavy grazing (free grazing), and no grazing (closed to any grazing), which was considered the control treatment. The results showed that the biomass yield in nongrazed plots was higher than in the grazed plots. However, the biomass yield in grazed plots improved over the years. Species richness and percentage of dominant species attributes were better in medium grazed plots than the other treatments. Soil compaction was higher in very heavily grazed plots than in nongrazed and medium-grazed plots. In contrast to that, the soil water content and infiltration rate were better in nongrazed plots than in grazed plots. Soil loss in grazed plots decreased with the increase of biomass yields and as the soil was more compacted by livestock trampling during the wet season. Finally since the medium stocking rate is better in species richness and plant attributes, and lies between nongrazed and heavily grazed plots in the rest of the measured parameters, it could be the appropriate stocking rate to practice by the smallholder farmer.  相似文献   

5.
Since wetland construction projects are becoming more commonplace, meaningful follow-up studies are needed to evaluate how these systems change over time. To that end, the objective of our study was to examine the temporal changes in plant community composition and water chemistry in two constructed wetlands. We investigated two wetland sites that were constructed in 2003 in northern Otsego County, NY, a county that is largely dominated by agriculture. Site 1 was previously an active cow pasture and site 2 was previously a wet meadow surrounded by agricultural fields. No active plant introduction was made during the construction; however, both sites were located in areas with many remnant wetlands and were connected to through-flowing streams. In 2004 (Year 1) and 2010 (Year 7), the plant community composition and nitrogen retention were assessed. We found that both sites experienced site-wide declines in plant species richness, including the loss of upland and facultative upland species and the unanticipated loss of facultative wetland and some obligate species. We propose that high water levels, which, at their maximum depth were >1.5 m deeper than in Year 1, maintained by landowners in the years after the initial survey, may have been responsible for the unexpected loss of wetland species. We also found that site 1 exhibited considerable nitrogen retention in both Year 1 and Year 7; however, N concentrations were low at site 2 in both years.  相似文献   

6.
Fire and grazing are common management schemes of grasslands globally and are potential drivers of reptilian and amphibian (herpetofauna) metacommunity dynamics. Few studies have assessed the impacts of fire and cattle grazing on herpetofauna assemblages in grasslands. A patch-burn grazing study at Osage Prairie, MO, USA in 2011–2012 created landscape patches with treatments of grazing, fire, and such legacies. Response variables were measured before and after the application of treatments, and I used robust-design occupancy modeling to estimate patch occupancy and detection rate within patches, and recolonization and extinction (i.e., dispersal) across patches. I conducted redundancy analysis and a permuted multivariate analysis of variance to determine if patch type and the associated environmental factors explained herpetofauna assemblage. Estimates for reptiles indicate that occupancy was seasonally constant in Control patches (ψ ~ 0.5), but declined to ψ ~ 0.15 in patches following the applications of fire and grazing. Local extinctions for reptiles were higher in patches with fire or light grazing (ε ~ 0.7) compared to the controls. For the riparian herpetofaunal community, patch type and grass height were important predictors of abundance; further, the turtles, lizards, snakes, and adult amphibians used different patch types. The aquatic amphibian community was predicted by watershed and in-stream characteristics, irrespective of fire or grazing. The varying responses from taxonomic groups demonstrate habitat partitioning across multiple patch types undergoing fire, cattle grazing, and legacy effects. Prairies will need an array of patch types to accommodate multiple herpetofauna species.  相似文献   

7.
Conservation Area Management Committees (CAMCs)—the functional decision-making units consisting entirely of local villagers—are grassroots organizations legally established to manage the Annapurna Conservation Area (ACA) in Nepal. These committees suffered due to the decade-long Maoist insurgency, but they survived. The paper attempts to test what factors contributed to their resiliency. For this, I surveyed 30 CAMCs during the summer of 2007 and conducted semi-structured interviews of 190 executive members of the CAMCs and 13 park officials who closely monitor the CAMCs. Regression results showed that the number of leaders (b = 0.44, t = 2.38, P = .027) was the most critical variable for building the resilience of CAMCs to the Maoist insurgency, i.e., retaining the same function, structure, and identity of the committees. As there were no reported conflicts among leaders and they were involved in negotiations and devising contingency plans, CAMCs actually benefited from having more leaders. Of the three diversity indices, the quadratic terms of age diversity (b = ?5.42, t = 1.95, P = .064) and ethnic diversity (b = ?4.05, t = 1.78, P = .075) had a negative impact on the CAMCs’ resilience. Skill diversity and organizational memory had no significant influence on the CAMCs’ resilience (t < 1.48, P > .10). These results have important implications for building resilience in community-based conservation.  相似文献   

8.
This paper deals with effects of sheep and goat grazing on plant species diversity, species richness and species composition in two important conservation areas of the Western Himalaya; the Valley of Flowers (VOF) National Park and the Great Himalayan National Park (GHNP). The VOF is a completely Protected Area as it is devoid of livestock grazing whereas, 20,000 sheep and goats annually graze in GHNP. Both the National Parks possess sub-alpine and alpine vegetation that is distributed in 13 major habitat types. Present investigations indicate that all the habitat types in VOF are higher in plant species diversity and richness compared to habitat types in GHNP. Similarly, all three eco-climatic zones in VOF are higher in species diversity and richness compared to GHNP. Species diversity also decreases with increasing altitude in both the National Parks. The findings of this study are discussed in the light of the management and conservation of alpine meadows of the Western Himalayas.  相似文献   

9.
In the coastal temperate rainforest of British Columbia (BC) in western Canada, government policies stipulate that foresters leave unlogged hydroriparian buffer strips up to 25 m on each side of streams to protect wildlife habitat. At present, studies on the effectiveness of these buffers focus on mammals, birds, and amphibians while there is comparably little information on smaller organisms such as liverworts in these hydroriparian buffers. To address this gap of knowledge, we conducted field surveys of liverworts comparing the percent cover and community composition in hydroriparian forested areas (n = 4 sites, n = 32 plots with nested design) to hydroriparian buffer zones (n = 4 sites, n = 32 plots). We also examined how substrate type affected the cover of liverworts. Liverwort communities in buffers were similar to those in riparian forest areas and most liverworts were found on downed wood. Thus, hydroriparian buffers of 25–35 m on each side in a coastal temperate rainforest effectively provide habitat for liverworts as long as downed wood is left intact in the landscape. Because liverworts are particularly sensitive to changes in humidity, these results may indicate that hydroriparian buffers are an effective management strategy for bryophytes and possibly for a range of other riparian species that are particularly sensitive to forestry-related changes in microclimate.  相似文献   

10.
To assess the recovery trajectory and self-maintenance of restored ecosystems, a successional gradient (1, 3, 5, 15, and 30 years after abandonment) was established in a sub-alpine meadow of the eastern Tibetan Plateau in China. Plant communities and soil carbon and nitrogen properties were investigated and analyzed. Regression analyses were used to assess the models (linear or quadratic) relating measures of species richness, soil carbon and nitrogen properties to fallow time. We found that species richness (S) increased over the first 20 years but decreased thereafter, and aboveground biomass showed a linear increase along the fallow time gradient. The richness of different functional groups (forb, grass and legume) changed little along the fallow time gradient, but their corresponding above ground biomass showed the U-shaped, humped or linear pattern. Soil microbial carbon (MBC) and nitrogen (MBN) in the upper 20 cm showed a U-shaped pattern along the fallow time gradient. However, soil organic carbon (Corg) and total nitrogen (TN) in the soil at depth greater than 20 cm showed significant patterns of linear decline along the fallow time gradient. The threshold models of species richness reflected best the recovery over the 15 year fallow period. These results indicated that fallow time had a greater influence on development of the plant community than soil processes in abandoned fields in sub-alpine meadow ecosystem. These results also suggested that although the succession process did not significantly increase soil C, an increase in microbial biomass at the latter stage of succession could promote the decomposability of plant litter. Therefore, abandoned fields in sub-alpine meadow ecosystem may have a high resilience and strong rehabilitating capability under natural recovery condition.  相似文献   

11.
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.  相似文献   

12.
The effects of livestock grazing on selected riparian and stream attributes, water chemistry, and algal biomass were investigated over a two-year period using livestock enclosures and by completing stream surveys in the Cypress Hills grassland plateau, Alberta, Canada. Livestock enclosure experiments, partially replicated in three streams, comprised four treatments: (1) early season livestock grazing (June–August), (2) late season livestock grazing (August–September), (3) all season grazing (June–September), and (4) livestock absent controls. Livestock grazing significantly decreased streambank stability, biomass of riparian vegetation, and the extent to which aquatic vegetation covered the stream channels compared with livestock-absent controls. Water quality comparisons indicated significant differences among the four livestock grazing treatments in Battle and Graburn creeks but not in Nine Mile Creek. In Graburn Creek, the concentration of total phosphorus in the all-season livestock grazing treatment was significantly higher than that in the livestock-absent control, and the early season and late season grazing treatments. Concentrations of soluble reactive phosphorus in the all-season livestock grazing treatment also exceeded that in livestock-absent control. In contrast, differences in water quality variables in the remaining 22 comparisons (i.e., 22 of the total 24 comparisons) were minor even when differences were statistically significant. Effects of livestock grazing on algal biomass were variable, and there was no consistent pattern among creeks. At the watershed scale, spatial variation in algal biomass was related (P < 0.05) with concentrations of NO2 ? + NO3 ? and soluble reactive phosphorus in two of the four study creeks. Nutrient diffusing substrata experiments showed that algal communities were either nitrogen-limited or not limited by nutrients, depending on stream and season.  相似文献   

13.
The aim of this paper was to assess the influence of tamarisk shrubs on soil fertility, salinity and nematode communities in various habitats located in an arid desert-oasis region in northwest China. Three habitats were studied: sand dune, riparian zone and saline meadow, where tamarisk shrubs have been established in recent decades in order to vegetation restoration used as desertification control and saline land rehabilitation projects and become the dominant plant community. The parameters measured include soil organic carbon (SOC), total nitrogen, available phosphorus (P) and potassium (K), pH, salt component, and nematode community characteristics. Enrichment ratios (a comparison of the soil measurements between soils under canopy and in the open interspaces) for soil nutrients and salinity were used to evaluate fertility and salinity islands underneath the tamarisk shrubs. The soil nematode community was used as a biological indicator of soil condition. SOC and available P and K were higher beneath the plant canopy than in the open interspaces outside that canopy. The enrichment ratios for SOC and nutrients were highest for the sand dune habitat and tamarisk shrubs clearly created islands of greater salinity under the canopies. Nematode abundance per 100 g dry soil varied considerably between the locations and habitats, with the highest abundance found in sand dune and the lowest in saline meadow. A significantly higher nematode abundance and a lower trophic diversity were found in soils under the canopy compared to the soils in the open interspaces. With the exception of saline meadow, the abundance of bacterivores increased and fungivores decreased under the canopy relative to the open interspaces, and bacterivores dominated under the canopies in the sand dune and riparian habitats. The enrichment ratios for salinity were higher than for fertility, suggesting that improved soil fertility can not limit the impact of salinization beneath tamarisk shrubs. The adverse effect of salt accumulation on the soil environment should be taken into account when using tamarisk as restoration plant species, especially in saline meadow and controlling of tamarisk density should be considered when undertaking re-vegetation projects in the arid desert oasis regions.  相似文献   

14.
Abstract: A method was developed to characterize ecological integrity of riparian sites based on the abundance of hydric species. This wetland index can be calculated with species data, or with community type data as performed here. Classified riparian community types were used to describe vegetation at 14 livestock exclosures and adjacent grazed areas. Community type wetland index values were generated and used to calculate site wetland index values. It was hypothesized that removal of livestock would result in higher wetland index values because of release from herbivory and decreased physical disturbance of vegetation, streambanks, and soil. The wetland index for exclosures was about 12% higher than grazed sites; differences were statistically significant (p < 0.01) based on paired t‐tests. The increase in hydric vegetation after livestock exclusion may have contributed to the greater bank stability (p = 0.002) and smaller width‐to‐depth ratio (p = 0.005) in exclosures. Challenges were encountered in using community types to describe and compare site vegetation, which could be avoided with species data collection. The wetland index can be a tool to monitor sites over time, compare sites with similar environments, or compare sites for which environmental differences can be accounted.  相似文献   

15.
Introduced species pose a major threat to biodiversity across the globe. Understanding the impact of introduced species is critical for effective management. Many species around the world are reliant on tree cavities, and competition for these resources can be intense: threatening the survival of native species. Through the establishment of 225 nest boxes, we examined the relationship between tree density and the abundance and nesting success of three bird species in Canberra, Australia. The common myna (Acridotheres tristis) is an introduced species in Australia, and the crimson rosella (Platycercus elegans) and eastern rosella (Platycercus eximius) are native species. We then investigated the impact of common myna nest box occupation on crimson rosella and eastern rosella abundance. Tree density significantly influenced the abundance and cavity-nesting of all three species. Common myna abundance (birds per square kilometer) was greatest at low tree density sites (101.9 ± 22.4) and declined at medium (45.4 ± 10.1) and high (9.7 ± 3.6) tree density sites. The opposite pattern was observed for the crimson rosella, with greater abundance (birds per square kilometer) at high tree density sites (83.9 ± 9.3), declining over medium (61.6 ± 6.4) and low (31.4 ± 3.9) tree density sites. The eastern rosella was more abundant at medium tree density sites (48.6 ± 8.0 birds per square kilometer). Despite the strong influence of tree density, we found a significant negative relationship between common myna nest box occupancy and the abundance of the crimson rosella (F 1,13 = 7.548, P = 0.017) and eastern rosella (F 1,13 = 9.672, P < 0.001) at some sites. We also observed a slight increase in rosella nesting interruptions by the common myna at lower tree densities (high: 1.3 % ± 1.3, medium: 6.6 % ± 2.2, low: 12.7 % ± 6.2), although this increase was not statistically significant (F 2,40 = 2.435, P = 0.100). Our study provides the strongest evidence to date for the negative impact of the common myna on native bird abundance through cavity-nesting competition. However, due to the strong influence of habitat on species abundance and nesting, it is essential to investigate the impacts of introduced species in conjunction with habitat variation. We also suggest one component of introduced species management could include habitat restoration to reduce habitat suitability for introduced species.  相似文献   

16.
The effects of livestock grazing on selected riparian and stream attributes, water chemistry, and algal biomass were investigated over a two-year period using livestock enclosures and by completing stream surveys in the Cypress Hills grassland plateau, Alberta, Canada. Livestock enclosure experiments, partially replicated in three streams, comprised four treatments: (1) early season livestock grazing (June–August), (2) late season livestock grazing (August–September), (3) all season grazing (June–September), and (4) livestock absent controls. Livestock grazing significantly decreased streambank stability, biomass of riparian vegetation, and the extent to which aquatic vegetation covered the stream channels compared with livestock-absent controls. Water quality comparisons indicated significant differences among the four livestock grazing treatments in Battle and Graburn creeks but not in Nine Mile Creek. In Graburn Creek, the concentration of total phosphorus in the all-season livestock grazing treatment was significantly higher than that in the livestock-absent control, and the early season and late season grazing treatments. Concentrations of soluble reactive phosphorus in the all-season livestock grazing treatment also exceeded that in livestock-absent control. In contrast, differences in water quality variables in the remaining 22 comparisons (i.e., 22 of the total 24 comparisons) were minor even when differences were statistically significant. Effects of livestock grazing on algal biomass were variable, and there was no consistent pattern among creeks. At the watershed scale, spatial variation in algal biomass was related (P < 0.05) with concentrations of NO2 + NO3 and soluble reactive phosphorus in two of the four study creeks. Nutrient diffusing substrata experiments showed that algal communities were either nitrogen-limited or not limited by nutrients, depending on stream and season.  相似文献   

17.
Sampling data are provided and concepts discussed regarding soil and foliage arthropod communities in conventional and no-tillage soybean agroecosystems Soil arthropod communities from the two cropping systems were also compared with that from an adjacent old field. Biweekly arthropod samples were collected from conventional, no-tillage, and old-field systems Soil arthropods were sampled by quadrat and pitfall trap methods, foliage arthropods were collected by sweep net Quadrat sampling revealed that ground beetle number, species diversity, and biomass were significantly higher (P<0.05) in no-tillage than in conventional tillage systems. Pitfall trap data indicated higher densities and species diversity for most major soil macro-arthropod guilds Foliage arthropod guilds from no-tillage treatments showed higher species diversity throughout the growing season than those of conventional tillage, possibly because of greater structural diversity provided by weeds and litter in notillage systems No-tillage systems supported a larger and more diverse arthropod community than conventionally grown soybeans, suggesting a need for pest management strategies that simultaneously consider many variables. Both foliar grazing and leaf nitrogen content were higher in conventional than in no-tillage systems, indicating a possible causal connection between soil tillage and insect herbivory rates  相似文献   

18.
Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P < 0.001) for converted soils than those for cultivated soils but lower (P < 0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m?2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m?2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P < 0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).  相似文献   

19.
A study has been made of the relationships between the characteristics of the riparian vegetation (floristic composition, structure and diversity) and the spatial–temporal variation of the quality of the stream waters in a basin under a semiarid Mediterranean climate in the southeastern Iberian Peninsula. The plant communities of the high reaches present greater specific richness and diversity (S mean= 7.0 ± 3.4 and Hmean= 2.0 ± 0.7) than do those of the middle and low reaches (S mean= 4.5 ± 1.6 and Hmean= 1.8 ± 0.6). One zone reached the highest specific richness (S= 12, H′= 3.2), which, apart from being situated in the intermediate stretch of the basin, represents a transitional state (ecotone) between the Salix and Tamarix communities. The characteristics of the waters analyzed indicate very high rates of erosion and runoff due to the nature of the soils (easily eroded marls) and to agricultural expansion and mining since the 16th century. The present-day riparian vegetation is not adequate to absorb the nitrates added to the basin by crop fertilization, reaching extremely high values, particularly during the dry period (between 1.2 and 42.5 mg/liter). Sewage dumping at three sampling stations did not appear to affect the specific composition of the woody vegetation. In the zones with watercourses, water salinity was low during the period of greater water flow, but considerably higher in the dry season (the upper limit was some 1.2 mS/m), resulting in a predominance of salt cedars over willows. Three types of saltcedar areas were distinguished: subhalophilous, which barely changes its chemical composition over the season; halophilous, which develops over strongly mineralized waters and markedly alters in chemical composition during the dry season; and hyperhalophilous, where salinity is extraordinarily high and quite constant throughout the year. A direct relationship was found between the dominance of Tamarix africana and abundance of NaCl.  相似文献   

20.
Land uses such as forestry and agriculture are presumed to degrade the biodiversity of riparian wetlands in the northern temperate regions of the United States. In order to improve land use decision making in this landscape, floral and faunal communities of 15 riparian wetlands associated with low-order streams were related to their surrounding land cover to establish which organismal groups are affected by anthropogenic disturbance and whether these impacts are scale-specific. Study sites were chosen to represent a gradient of disturbance. Vascular plants of wet meadow and shrub carr communities, aquatic macro-invertebrates, amphibians, fish and birds were surveyed, and total abundance, species richness and Shannon diversity were calculated. For each site, anthropogenic disturbances were evaluated at local and landscape scales (500, 1000, 2500 and 5000 m from the site and the site catchment) from field surveys and a geographic information system (GIS). Land use data were grouped into six general land use types: urban, cultivated, rangeland, forest, wetland and water. Shrub carr vegetation, bird and fish diversity and richness generally decrease with increasing cultivation in the landscape. Amphibian abundance decreases and fish abundance increases as the proportions of open water and rangeland increases; bird diversity and richness increase with forest and wetland extent in the landscape. Wet meadow vegetation, aquatic macro-invertebrates, amphibians and fish respond to local disturbances or environmental conditions. Shrub carr vegetation, amphibians and birds are influenced by land use at relatively small landscape scales (500 and 1000 m), and fish respond to land use at larger landscape scales (2500, 5000 m and the catchment). Effective conservation planning for these riparian wetlands requires assessment of multiple organismal groups, different types of disturbance and several spatial scales.1998 Academic Press  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号