首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
UV/H_2O_2高级氧化技术在水处理中的研究进展   总被引:2,自引:0,他引:2  
本文主要讨论了UV/H2O2高级氧化技术去除有机物的机理,在有机废水、饮用水处理中的应用进展。UV/H2O2工艺对水中生物难降解的有机污染物具有很好的处理效果,其主要影响因素包括污染物的初始浓度、紫外光波长及强度、H2O2投加浓度、pH、光照时间、浊度、水中存在的阴离子等。  相似文献   

2.
UV/H2O2联用工艺相对单独UV工艺和单独H2O2工艺对羧酸的降解率更高,主要是由于UV激发H2O2产生了氧化性更强的羟基自由基。通过在不同H2O2浓度下UV/H2O2联用工艺对甲酸、草酸、水杨酸三种小分子羧酸的降解实验发现,不同种类的羧酸存在一个最适H2O2浓度。低于最适浓度,H2O2浓度每增加一定值,羧酸的最大降解率增加量随之增加;高于最适浓度,最大降解率增加量随之减少。UV/H2O2工艺对小分子羧酸的降解率与羧酸分子的结构和相对分子质量有关,结构越复杂,相对分子质量越高,小分子羧酸的降解率越低。  相似文献   

3.
过氧化氢为高级氧化中常用的氧化剂,和紫外光结合时,易于形成羟基自由基,氧化能力增强。UV/H2O2、UV/H2O2/O3、Fe2+/H2O2/UV高级氧化技术联合工艺,能产生氧化性极强的羟基自由基,从而能有效地分解一些单独使用H2O2不能分解或分解效率较差的有机污染物和无机污染物。UV/H2O2治理烟道气污染物NOx目前正处于研究阶段,投入使用还需进一步研究。  相似文献   

4.
本文采用紫外光—双氧水 (UV/H2 O2 )氧化过程并加入亚铁盐作催化剂 ,对直链十二烷基苯磺酸钠 (LAS)的光催化氧化降解进行了研究。从实际应用出发 ,实验得出影响LAS降解的各因素的最佳取值及影响显著性次序。  相似文献   

5.
对O3/H2O2氧化页岩气产出水降解有机物动力学、特征污染物苯胺降解动力学及机理进行实验分析,研究结果表明:页岩气产出水有机物、苯胺降解符合一级反应动力学;臭氧分子的分解符合零级反应动力学。通过液相色谱-质谱(LC-MS)分析O3/H2O2氧化苯胺降解过程中间产物,发现O3/H2O2氧化法不能完全 将页岩气产出水矿化为二氧化碳和水,只是将复杂有机物分子转化为结构简单的直链烷烃或者羧酸类物质,需与其他氧化方式相结合才可将有机物完全去除,并提出了降解返排液中苯胺的两条可能途径,为O3/H2O2氧化工艺实际应用提供理论依据。  相似文献   

6.
对铁碳处理硝基酚废水的研究   总被引:1,自引:0,他引:1  
铁碳降解水中难降解有机污染物的影响因素、最佳工艺参数及处理效果;初步探讨了氧化降解污染物的作用机理;通过分析污染物降解的中间产物,提出了污染物降解的可能途径.探讨了pH、铁碳用量、温度以及锰矿物的粒径等对处理效果的影响,在最佳的工艺条件下,CODCr的去除率达到95%以上,TOC测定表明:大部分硝基酚被氧化降解为H2O和CO2.对硝基酚的降解途径主要是微电解将对硝基酚还原为对氨基酚,对氨基酚在酸性条件下被软锰矿氧化为H2O和CO2做探索性研究.  相似文献   

7.
本文研究了混凝—催化臭氧化对垃圾渗滤液MBR出水COD、UV254和色度的去除效果及可生化性能的影响。在pH 11,FeCl3用量800 mg/L的优化条件下,COD、UV254和色度去除率分别为37.8%、61.9%和88.7%。混凝出水催化臭氧化结果表明,3%-Ce/AC催化臭氧化效率最好,COD去除率为33.6%,臭氧消耗系数为1.40 mgO3/mgCOD。经混凝—催化臭氧化处理后,MBR出水的COD、UV254及色度总去除率分别为58.7%、90.8%及98.7%,BOD5/COD从0.036提高到0.375,可生化性明显改善。  相似文献   

8.
通过高温煅烧制备复合光催化剂Fe_2O_3/TiO_2,加入H_2O_2构建芬顿-光催化协同体系,对有机废水进行深度降解处理。实验结果表明,Fe_2O_3含量为3%的复合光催化剂投加量1.0 g/L,H_2O_2浓度30 mmol/L,紫外光照射3 min,20 mg/kg亚甲基蓝溶液降解率为88.6%,比TiO_2单体活性提高5倍,芬顿体系3 min对MB几乎无降解,芬顿-光催化协同极大地提高了处理有机污染物的降解能力。紫外光照射20 min,能降解98.2%的20 mg/kg苯酚溶液,分别是单体TiO_2和芬顿体系活性的3倍和24.5倍。  相似文献   

9.
HPA/ZnFe2O4-TiO2光催化剂的制备及对马拉硫磷的可见光降解   总被引:3,自引:0,他引:3  
董轶茹 《四川环境》2009,28(3):14-18
以纳米TiO2载体,利用浸渍法制备了HPA/ZnFe2O4-TiO2光催化剂。对制备的催化剂进行了XRD、BET、TEM和UV-vis DRS表征。结果表明,催化剂样品均为锐钛矿相且ZnFe2O4很好地分散在载体表面,HPA/ZnFe2O4-TiO2光催化荆的平均粒径为10nm且在380-670nm均有强的光响应;反应最佳的HPA浓度为O.08molfL,最佳的ZnFe2O4负载量为1%。考察了HPA溶液初始浓度、ZnFe2O4负载量、溶液初始pH值、H2O2用量、催化剂用量对催化剂活性的影响。在溶液初始pH=13,H2O2=6mmol/L,催化剂用量为2g/L的最优条件下,光照反应进行100min后,马拉硫磷的降解率可达87%;重复4次后马拉硫磷的降解率仍可以达到67%。  相似文献   

10.
针对普通方法难以降解水中农药废水的问题,运用紫外(UV)/过氧硫酸氢钾(PMS)系统降解高效氟吡甲禾灵,探讨溶液中反应污染物的初始浓度、氧化剂PMS添加量、腐殖酸浓度、初始pH值和常见无机阴离子等的影响因素。结果显示:UV通过催化PMS产生氧化性很强的活性自由基(·SO_4~-、·OH),能有效降解水中高效氟吡甲禾灵,降解反应符合拟一级动力学模型(R~20.98),反应污染物的初始浓度与降解速率呈负相关;氧化剂PMS添加量与降解速率呈正相关。添加的腐殖酸浓度越高,抑制降解反应的作用越明显,中性和弱碱条件下降解效果较好。当pH=7.41时,具有最大去除率(56.82%);少量的HCO_3~-对降解高效氟吡甲禾灵具有促进作用,高浓度则会抑制降解。在c(HCO_3~-)=10mmol/L时最大,Cl~-会抑制其降解;添加乙醇和叔丁醇淬灭剂,kobs均大量减小,UV/PMS的活性氧化物主要是·SO_4~-。  相似文献   

11.
This paper investigated the biodegradation kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) separately in batch reactors and mixed in sequencing batch reactors (SBRs). Batch reactor experiments showed that both 4-CP and 2,4-DCP began to inhibit their own degradation at 53 and 25 mg l(-1), respectively, and that the Haldane equation gave a good fit to the experimental data because r(2) values were higher than 0.98. The maximum specific degradation rates (q(m)) were 130.3 and 112.4 mg g(-1) h for 4-CP and 2,4-DCP, respectively. The values of the half saturation (K(s)) and self-inhibition constants (K(i)) were 34.98 and 79.74 mg l(-1) for 4-CP, and 13.77 and 44.46 mg l(-1) for 2,4-DCP, respectively. The SBR was fed with a mixture of 220 mg l(-1) of 4-CP, 110 mg l(-1) of 2,4-DCP, and 300 mg l(-1) of peptone as biogenic substrate at varying feeding periods (0-8h) to evaluate the effect of feeding time on the performance of the SBR. During SBR operation, in addition to self-inhibition, 4-CP degradation was strongly and competitively inhibited by 2,4-DCP. The inhibitory effects were particularly pronounced during short feeding periods because of higher chlorophenol peak concentrations in the reactor. The competitive inhibition constant (K(ii)) of 2,4-DCP on 4-CP degradation was 0.17 mg l(-1) when the reactor was fed instantaneously (0 h feeding). During longer feedings, increased removal/loading rates led to lower chlorophenol peak concentrations at the end of feeding. Therefore, in multi-substrate systems feeding time plus reaction time should be determined based on both degradation kinetics and substrate interaction. During degradation, the meta cleavage of 4-chlorocatechol resulted in accumulation of a yellowish color because of the formation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), which was further metabolized. Isolation and enrichment of the chlorophenols-degrading culture suggested Pseudomonas sp. and Pseudomonas stutzeri to be the dominant species.  相似文献   

12.
A study of the effluent of an anaerobic fluidized bed reactor acclimated to 2,4,5-TCP was made in order to determine the metabolic pathway and reaction rate limiting step of 2,4,5-TCP. The wastewater with about 2500 mg L−1 COD and 50 mg L−1 2,4,5-TCP was biodegraded by anaerobic digestion, and the intermediate analyzed by HPLC and GC/MS. The results showed the degradative metabolic pathway of 2,4,5-TCP, under anaerobic conditions, to be: 2,4,5-TCP→3,4-DCP→3-CP→phenol→benzoate. For the rate limiting step, the accumulated concentration of 3,4-DCP was higher than other intermediates for Anaerobic Toxicity Assay (ATA) and Biochemical Methane Potential (BMP) tests. From the anaerobic fluidized bed reactor, analyses showed the chloride at the ortho-position was removed very quickly after 2,4,5-TCP entered the reactor. As for the intermediate products, 43% of 3,4-DCP was not decomposed and of the 3-CP only 6.4% left. This shows that the rate limiting step of 2,4,5-TCP was the dechlorination of 3,4-DCP.  相似文献   

13.
Enzyme treatment is currently considered for remediation of terrestrial systems polluted with organic compounds. In this study, two soils from Pennsylvania with 2.8 or 7.4% organic matter contents (Soils 1 and 2, respectively) were amended with 14C-labeled 2,4-dichlorophenol (2,4-DCP) and incubated with a laccase from Trametes villosa (free or immobilized on montmorillonite). 2,4-DCP was either transformed to methanol-soluble polymeric products (11-32%) or covalently bound to soil organic matter (53-85%); unaltered 2,4-DCP could be recovered from soil by methanol extraction (0-38%) at the completion of a 14-d incubation period. In Soil 1, both free and immobilized laccase removed 100% of 2,4-DCP without regard for moisture conditions. In Soil 2, immobilized laccase removed more 2,4-DCP (about 95%, regardless of moisture conditions) than free enzyme (55, 75, and 90% at 30, 55, and 100% of maximum water-holding capacity, respectively). Binding of 2,4-DCP in the humin fraction was nearly the same for free and immobilized laccase. More 2,4-DCP, however, was bound to humic and fulvic acids in the presence of immobilized laccase than in the presence of free laccase. In general, immobilized laccase performed better than free laccase. However, for practical applications, the higher activity of immobilized laccase is offset by a 23% loss in enzyme activity during immobilization, which approximates the 30% increase in free laccase needed to achieve the same level of remediation. Furthermore, immobilized laccase is more costly than free T. villosa laccase.  相似文献   

14.
光助氧化技术在水处理中应用   总被引:5,自引:0,他引:5  
对UV/H2O2技术、UV/O3技术、UV/O3/H2O2技术、photo—Fenton技术以及UV/TiO2技术进行了总结,对不同技术的原理、研究进展及应用进行了评述,并对今后光助氧化技术的研究方向提出了一些建议。  相似文献   

15.
Use of additives, such as polyethylene glycol (PEG), selected surfactants, chitosan gel, or activated carbon, has been shown to enhance enzymatic treatment of water polluted with organic compounds. In this study, additives were used to facilitate the removal of 2,4-dichlorophenol (2,4-DCP) from water using minced horseradish (Armoracia rusticana P. Gaertn. et al.) as a carrier of peroxidase activity. The specific objectives of the study were to (i) enhance the pollutant removal activity of minced horseradish by the addition of PEG and other additives (e.g., Tween 20, Triton X-100, and rhamnolipid); (ii) eliminate colored reaction products by the addition of chitosan; and (iii) eliminate color by amending treated water with activated carbon. The disappearance of 2,4-DCP in horseradish-treated water samples amended with PEG or various surfactants (75-90%) was greatly increased over that observed in nonamended samples (29%). The effect of PEG depended on its average molecular weight. As indicated by visible spectrophotometry, enclosing horseradish pieces between two sealed chitosan films completely eliminated colored reaction products; however, the decolorization was accompanied by a reduction in 2,4-DCP removal (from 95 to 60%). On the other hand, commercially available activated carbon completely removed colored reaction products from the treated water without reducing the removal efficiency. Based on the results obtained, it can be concluded that the use of additives may considerably improve the quality of wastewater treated by plant materials.  相似文献   

16.
The rates of Diuron elimination by some advanced oxidation processes (AOPs) such as Fe(III)/UV, Ferrioxalate/UV, Fe(III)/H(2)O(2)/UV, Ferrioxalate/UV/H(2)O(2) and Fe(III)/H(2)O(2) have been compared. Experiments have been conducted at pH=2.3+/-0.1 with a batch reactor equipped with a low-pressure mercury lamp emitting mainly at 253.7nm. Data obtained under the following experimental conditions ([H(2)O(2)](0)=10(-3)M, [Diuron](0)=5x10(-5)M and [Fe(III)](0)=10(-3)M) have shown that rates of Diuron oxidation were higher with the systems Fe(III)/H(2)O(2)/UV and Ferrioxalate/UV/H(2)O(2) than with Fe(III)/UV and Fe(III)/H(2)O(2). On the other hand, Fe(III)/UV was found to be very efficient in mineralization of Diuron solution in comparison to direct UV photolysis. The experimental results showed that radical ()OH is the major pathway in the process of Diuron degradation.  相似文献   

17.
The performance of an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP) was evaluated at different hydraulic retention times (HRTs) using synthetic wastewater in order to obtain the growth substrate (glucose-COD) and 2,4 DCP removal kinetics. Treatment efficiencies of the UASB reactor were investigated at different hydraulic retention times (2-20 h) corresponding to a food to mass (F/M) ratio of 1.2-1.92 g-COD g(-1) VSS day(-1). A total of 65-83% COD removal efficiencies were obtained at HRTs of 2-20 h. In all, 83% and 99% 2,4 DCP removals were achieved at the same HRTs in the UASB reactor. Conventional Monod, Grau Second-order and Modified Stover-Kincannon models were applied to determine the substrate removal kinetics of the UASB reactor. The experimental data obtained from the kinetic models showed that the Monod kinetic model is more appropriate for correlating the substrate removals compared to the other models for the UASB reactor. The maximum specific substrate utilization rate (k) (mg-COD mg(-1) SS day(-1)), half-velocity concentration (K(s)) (mg COD l(-1)), growth yield coefficient (Y) (mg mg(-1)) and bacterial decay coefficient (b) (day(-1)) were 0.954 mg-COD mg(-1) SS day(-1), 560.29 mg-COD l(-1), 0.78 mg-SS g(-1)-COD, 0.093 day(-1) in the Conventional Monod kinetic model. The second-order kinetic coefficient (k(2)) was calculated as 0.26 day(-1) in the Grau reaction kinetic model. The maximum COD removal rate constant (U(max)) and saturation value (K(B)) were calculated as 7.502 mg CODl(-1)day(-1) and 34.56 mg l(-1)day(-1) in the Modified Stover-Kincannon Model. The (k)(mg-2,4 DCP mg(-1) SS day(-1)), (K(s)) (mg 2,4 DCPl(-1)), (Y) (mg SS mg(-1) 2,4 DCP) and (k(d)) (day(-1)) were 0.0041 mg-2,4 DCP mg(-1) SS day(-1), 2.06 mg-COD l(-1), 0.0017 mg-SS mg(-1) 2,4 DCP and 3.1 x 10(-5) day(-1) in the Conventional Monod kinetic model for 2,4 DCP degradation. The second-order kinetic coefficient (k(2)) was calculated as 0.30 day(-1) in the Grau reaction kinetic model. The maximum 2,4 DCP removal rate constant (U(max)) and saturation value (K(B)) were calculated as 0.01 mg COD l(-1) day(-1) and 9.8 x 10(-3) mg l(-1) day(-1) in the Modified Stover-Kincannon model.  相似文献   

18.
超声波降解苯酚溶液的研究   总被引:9,自引:0,他引:9  
以20mg/L的苯酚为研究对象,在超声波槽中对超声波作用于苯酚的降解效率和降解规律进行了初步研究。实验表明:单一的超声波对苯酚的降解率是很低的,不超过6.3%;而在苯酚溶液中加入H2O2后,降解率提高了大约3倍;酸性条件利于苯酚的降解,而在碱性条件下苯酚几乎没有降解。  相似文献   

19.
通过对水杨酸降解的UV扫描吸收光谱的研究表明,在水杨酸的电催化氧化和超声辅助电催化氧化降解过程中,都有吸收紫外光的中间体生成,对吸光度峰值随降解反应时间的变化关系进行非线性最小二乘法拟合(NLSF),发现其衰减均符合表观一级反应动力学规律;而COD值的衰减也都符合表观一级反应动力学规律。GC-MS检测到水杨酸超声辅助电催化氧化降解60 min后,有中间产物甲酸、乙酸、苯酚,认为是水杨酸在.OH的作用下,开环氧化降解生成乙酸和甲酸等小分子有机物,最后降解为二氧化碳和水。  相似文献   

20.
The degradation rate of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in silica-slurry systems to evaluate the bioavailability of sorbed-phase contaminant. After the silica particles were saturated with 2,4-D, the system was inoculated with the 2,4-D-degrading microorganism Flavorbacterium sp. strain FB4. The disappearance rate of 2,4-D was found to be greater than the rate predicted based upon liquid-phase 2,4-D concentrations. A kinetic formulation, termed the enhanced bioavailability model, was developed to describe the desorption and biodegradation processes in this batch system. The approach assumes that 2,4-D resides in both the liquid and solid phases and degradation occurs via both suspended and attached biomass. All biomass can degrade liquid-phase 2,4-D at one rate, while only attached biomass can degrade sorbed 2,4-D at another rate. An enhanced transformation factor (Ef) was introduced to express the increased biodegradation rate over that expected from the liquid phase only. This approach was able to account for the increased degradation rates observed experimentally. The results provide evidence that desorption to the bulk solution is not prerequisite to degradation, and that sorbed substrate may be available for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号