首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A measure of soil P status in agricultural soils is generally required for assisting with prediction of potential P loss from agricultural catchments and assessing risk for water quality. The objectives of this paper are twofold: (i) investigating the soil P status, distribution, and variability, both spatially and with soil depth, of two different first-order catchments; and (ii) determining variation in soil P concentration in relation to catchment topography (quantified as the "topographic index") and critical source areas (CSAs). The soil P measurements showed large spatial variability, not only between fields and land uses, but also within individual fields and in part was thought to be strongly influenced by areas where cattle tended to congregate and areas where manure was most commonly spread. Topographic index alone was not related to the distribution of soil P, and does not seem to provide an adequate indicator for CSAs in the study catchments. However, CSAs may be used in conjunction with soil P data for help in determining a more "effective" catchment soil P status. The difficulties in defining CSAs a priori, particularly for modeling and prediction purposes, however, suggest that other more "integrated" measures of catchment soil P status, such as baseflow P concentrations or streambed sediment P concentrations, might be more useful. Since observed soil P distribution is variable and is also difficult to relate to nationally available soil P data, any assessment of soil P status for determining risk of P loss is uncertain and problematic, given other catchment physicochemical characteristics and the sampling strategy employed.  相似文献   

2.
The European Union Water Framework Directive (WFD) requires Member States to set water quality objectives and identify cost-effective mitigation measures to achieve "good status" in all waters. However, costs and effectiveness of measures vary both within and between catchments, depending on factors such as land use and topography. The aim of this study was to develop a cost-effectiveness analysis framework for integrating estimates of phosphorus (P) losses from land-based sources, potential abatement using riparian buffers, and the economic implications of buffers. Estimates of field-by-field P exports and routing were based on crop risk and field slope classes. Buffer P trapping efficiencies were based on literature metadata analysis. Costs of placing buffers were based on foregone farm gross margins. An integrated optimization model of cost minimization was developed and solved for different P reduction targets to the Rescobie Loch catchment in eastern Scotland. A target mean annual P load reduction of 376 kg to the loch to achieve good status was identified. Assuming all the riparian fields initially have the 2-m buffer strip required by the General Binding Rules (part of the WFD in Scotland), the model gave good predictions of P loads (345-481 kg P). The modeling results show that riparian buffers alone cannot achieve the required P load reduction (up to 54% P can be removed). In the medium P input scenario, average costs vary from £38 to £176 kg P at 10% and 54% P reduction, respectively. The framework demonstrates a useful tool for exploring cost-effective targeting of environmental measures.  相似文献   

3.
In this paper we show the quantitative and relative importance of phosphorus (P) losses from agricultural areas within European river basins and demonstrate the importance of P pathways, linking agricultural source areas to surface water at different scales. Agricultural P losses are increasingly important for the P concentration in most European rivers, lakes, and estuaries, even though the quantity of P lost from agricultural areas in European catchments varies at least one order of magnitude (<0.2 kg P ha(-1) to >2.1 kg P ha(-1)). We focus on the importance of P for the implementation of the EU Water Framework Directive and discuss the benefits, uncertainties, and side effects of the different targeted mitigation measures that can be adopted to combat P losses from agricultural areas in river basins. Experimental evidence of the effects of some of the main targeted mitigation measures hitherto implemented is demonstrated, including: (i) soil tillage changes, (ii) treatment of soils near ditches and streams with iron to reduce P transport from source areas to surface waters, (iii) establishment of buffer zones for retaining P from surface runoff, (iv) restoration of river-floodplain systems to allow natural inundation of riparian areas and deposition of P, and (v) inundation of riparian areas with tile drainage water for P retention. Furthermore, we show how river basin managers can map and analyze the extent and importance of P risk areas, exemplified by four catchments differing in size in Norway, Denmark, and the Netherlands. Finally, we discuss the factors and mechanisms that may delay and/or counteract the responses of mitigation measures for combating P losses from agricultural areas when monitored at the catchment scale.  相似文献   

4.
The article analyses the perceptions at municipal level of potentials and problems in implementing integrated catchment management of water resources as proposed in the EU Water Framework Directive, expressed in views on how to reduce nutrient leakage from agricultural production. Heads of environmental authorities, spatial planners and environmental officers are among the professionals that will be key actors when implementing the WFD at the local level. Using a process of active focus group interviews, officials from municipal environmental offices studied, reflected upon and discussed the suggested plan concerning their part of implementing WFD. The municipal officers stressed certain conditions that have to be met to implement WFD in a sustainable manner. The most important conditions are clear environmental goals and management plans with support in legislation, which would put the necessary pressure upon local politicians to prioritize the WFD and take action. The respondents perceived the WFD would offer a changed approach in work routines with farmers towards partnerships for sustainable water resource management.  相似文献   

5.
Non-point-source pollution of surface and groundwater is a prominent environmental issue in rural catchments, with major consequences on water supply and aquatic ecosystem quality. Among surface-water protection measures, environmental or landscape management policies support the implementation and the management of buffer zones. Although a great number of studies have focused on buffer zones, quantification of the buffer effect is still a recurring question.The purpose of this article is a critical review of the assessment of buffer-zone functioning. Our objective is to provide land planners and managers with a set of variables to assess the limits and possibilities for quantifying buffer impact at the catchment scale. We first consider the scale of the local landscape feature. The most commonly used empirical method for assessing buffers is to calculate water/nutrient budgets from inflow–outflow monitoring at the level of landscape structures. We show that several other parameters apart from mean depletion of flux can be used to describe buffer functions. Such parameters include variability, with major implication for water management. We develop a theoretical framework to clarify the assessment of the buffer effect and propose a systematic analysis taking account of temporal variability. Second, we review the current assessment of buffer effects at the catchment scale according to the theoretical framework established at the local scale. Finally, we stress the limits of direct empirical assessment at the catchment scale and, in particular, we emphasize the hierarchy in hydrological processes involved at the catchment scale: The landscape feature function is constrained by other factors (climate and geology) that are of importance at a broader spatial and temporal scale.Published on line  相似文献   

6.
A common land and water management task is to determine where and by how much source loadings need to change to meet water quality limits in receiving environments. This paper addresses the problem of quantifying changes in loading when limits are specified in many locations in a large and spatially heterogeneous catchment, accounting for cumulative downstream impacts. Current approaches to this problem tend to use either scenario analysis or optimization, which suffer from difficulties of generating scenarios that meet the limits, or high complexity of optimization approaches. In contrast, we present a novel method in which simple catchment models, load limits, upstream/downstream spatial relationships and spatial allocation rules are combined to arrive at source load changes. The process iteratively establishes the critical location (river segment or lake) where the limits are most constraining, and then adjusts sources upstream of the critical location to meet the limit at that location. The method is demonstrated with application to New Zealand (268,000 km2) for nutrients and the microbial indicator E. coli, which was conducted to support policy development regarding water quality limits. The model provided useful insights, such as a source load excess (the need for source load reduction) even after mitigation measures are introduced in order to comply with E. coli limits. On the other hand, there was headroom (ability to increase source loading) for nutrients. The method enables assessment of the necessary source load reductions to achieve water quality limits over broad areas such as large catchments or whole regions.  相似文献   

7.
Under the EU Water Framework Directive (WFD) 20/60/EC and the US Federal Water Pollution Control Act 2002 management of water quality within river drainage basins has shifted from traditional point-source control to a holistic approach whereby the overall contribution of point and diffuse sources of pollutants has to be considered. Consequently, there is a requirement to undertake source-apportionment studies of pollutant fluxes within catchments. The inclusion of the Bathing Water Directive (BWD), under the list of 'protected areas' in the WFD places a requirement to control sources of faecal indicator organisms within catchments in order to achieve the objectives of both the BWD (and its revision - 2006/7/EC) and the WFD. This study was therefore initiated to quantify catchment-derived fluxes of faecal indicator compliance parameters originating from both point and diffuse sources. The Ribble drainage basin is the single UK sentinel WFD research catchment and discharges to the south of the Fylde coast, which includes a number of high profile, historically non-compliant, bathing waters. Faecal indicator concentrations (faecal coliform concentrations are reported herein) were measured at 41 riverine locations, the 15 largest wastewater treatment works (WwTWs) and 15 combined sewer overflows (CSOs) across the Ribble basin over a 44-day period during the 2002 bathing season. The sampling programme included targeting rainfall-induced high flow events and sample results were categorised as either base flow or high flow. At the riverine sites, geometric mean faecal coliform concentrations showed statistically significant elevation at high flow compared to base flow. The resultant faecal coliform flux estimates revealed that over 90% of the total organism load to the Ribble Estuary was discharged by sewage related sources during high flow events. These sewage sources were largely related to the urban areas to the south and east of the Ribble basin, with over half the load associated with the relatively small subcatchment of the River Douglas. The majority of this load was attributed to two WwTWs that discharge through a common outfall close to the tidal limit of this catchment. Budgets adjusted to accommodate the impact of proposed UV disinfection of these effluents showed that the load from these sources would be reduced significantly during base flow conditions. However, during high flow events loads would still remain high due to the operation of storm sewage overflows from stormwater retention tanks. The study identified untreated storm sewage spills from urban infrastructure and WwTW stormwater retention tanks as the dominant component of the high flow flux of faecal indicators to receiving waters of the Fylde coast and the associated bathing waters.  相似文献   

8.
This paper investigates index models as a tool to estimate the risk of N and P source strengths and loss at the catchment scale. The index models assist managers in improving the focus of remediation actions that reduce nutrient delivery to waterbodies. N and P source risk factors (e.g. soil nutrient concentrations) and transport risk factors (e.g. distance-to-streams) are used to determine the overall risk of nutrient loss for a case study in the Tuross River catchment of coastal southeast Australia. In the development of the N index model for Tuross, particulate N was considered important based on the observed event water quality data. In contrast to previous N index models, erosion and contributing distance were therefore included in the Tuross River catchment N index. Event-based water quality monitoring, and soil information, or in data-poor catchments conceptual understanding, are essential to represent catchment-scale processes. The techniques have high applicability in other catchments, and are complementary to other modelling techniques such as process-based semi-distributed modelling. Index models generally provide much more detailed spatial resolution than fully- or semi-distributed conceptual modelling approaches. Semi-distributed models can be used to quantify nutrient loads and provide overall direction to set the broad focus of management. Index models can then be used to refine on-the-ground investigations and investment priorities. In this way semi-distributed models can be combined with index models to provide a set of powerful tools to influence management decisions and outcomes.  相似文献   

9.
Mittman, Tamara, Lawrence E. Band, Taehee Hwang, and Monica Lipscomb Smith, 2012. Distributed Hydrologic Modeling in the Suburban Landscape: Assessing Parameter Transferability from Gauged Reference Catchments. Journal of the American Water Resources Association (JAWRA) 48(3): 546-557. DOI: 10.1111/j.1752-1688.2011.00636.x Abstract: Distributed, process-based models of catchment hydrologic response are potentially useful tools for the assessment of Low Impact Development (LID) techniques in urbanized catchments. Their application is often limited, however, by the lack of continuous streamflow records to calibrate poorly constrained parameters. This article examines the transferability of soil and groundwater parameters from a forested reference catchment to a nearby suburban catchment. We use the Regional Hydro-Ecologic Simulation System (RHESSys) to develop hydrologic models of one gauged forested and one ungauged suburban catchment within the Baltimore Ecosystem Study (BES) study area. We use a parameter uncertainty framework to calibrate soil and groundwater parameters for the forested catchment, and discrete measurements of streamflow from the suburban catchment to assess parameter transferability. Results indicate that the transfer of soil and groundwater parameters from forested reference to nearby suburban catchments is viable, with performance measures for the suburban catchment often exceeding those for the forested catchment. We propose that the simplification of hydrologic processes in urbanized catchments may account for the increase in model performance in the suburban catchment.  相似文献   

10.
A simple model predicting bathing water concentrations of Escherichia coli from livestock in the Irvine catchment in SW Scotland has been adapted for intestinal enterococci (IE). This has been used to predict risk of bather illness by extrapolation of published data on bather IE exposure vs incidence of gastro-enteritis. Simulated reduction in the risk of illness by reduced faecal loading was multiplied by a willingness to pay for risk reduction to estimate the annual benefits of mitigation. Health benefits of reducing loading by 75% at Irvine Beach were estimated by a willingness to pay method to be about pound 276k pa. Estimated annualised costs of diffuse pollution mitigation measures across the catchment were higher (> pound 1m), and it is very unlikely that 75% mitigation is achievable with current stocking rates. Further work should explore the influence of uncertainty of model parameters, and use emerging epidemiological information on specific zoonotic pathogens such as E. coli O157 and Cryptosporidium. Other components of the value of clean water should also be included to obtain a complete estimate of the cost:benefit of mitigation.  相似文献   

11.
The innovative approach to the protection and management of water resources at the basin scale introduced by the European Union water framework directive (WFD) requires new scientific tools. WFD implementation also requires the participation of many stakeholders (administrators, farmers and citizens) with the aim of improving the quality of river waters and basin ecosystems through cooperative planning. This approach encompasses different issues, such as agro-ecology, land use planning and water management. This paper presents the results of a methodology suggested for implementing the WFD in the case of the Seveso river contract in Italy, one of the recent WFD applications. The Seveso basin in the Lombardy region has been one of the most rapidly urbanizing areas in Italy over the last 50?years. First, land use changes in the last 50?years are assessed with the use of historical aerial photos. Then, elements of an ecological network along the river corridor are outlined, and different scenarios for enhancing existing ecological connections are assessed using indicators from graph theory. These scenarios were discussed in technical workshops with involved stakeholders of the river contract. The results show a damaged rural landscape, where urbanization processes have decimated the system of linear green features (hedges/rows). Progressive reconnections of some of the identified network nodes may significantly increase the connectivity and circuitry of the study area.  相似文献   

12.
Understanding the processes causing herbicide transport to surface waters is crucial to determine mitigation options to reduce these losses. To this end, we investigated the atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) transport in three agricultural catchments (1.1-2.1 km2) in the watershed of Lake "Greifensee" (Switzerland). In 1999, atrazine application data were recorded for all three catchments. Time proportional samples were taken at a high temporal resolution at the catchment outlets. Extremely wet conditions caused large relative losses from the catchments, ranging between 0.6 and 3.5% of the amount applied. Most of the atrazine load was due to event-driven diffuse losses from the fields. Farmyard runoff contributed less but caused the highest concentrations (up to 31 microg L(-1)) in the brooks. The maximum concentrations due to diffuse losses varied between 1.2 and 8.2 microg L(-1) among the catchments. Despite different absolute concentration levels, the concentration time-series were very similar. It seems that the travel-times within the catchments were mainly controlled by the rainfall pattern with little influence of the catchment properties. These properties, however, caused the relative losses to vary by a factor of 6 between the catchments. This variability could be partly explained by differences in the connectivity of the fields to the brooks and by their hydrological soil properties. A comparison of the losses from the three catchments with those from the entire watershed of Lake Greifensee demonstrated that they were representative for the larger area. Hence, the study results provide a good data set to evaluate distributed models predicting herbicide losses.  相似文献   

13.
The loss of phosphorus (P) from land to water is detrimental to surface water quality in many parts of New Zealand and Australia. Farming, especially pasture-based dairying, can be a source of P loss, but preventing it requires a range of fully costed strategies because little or no subsidies are available and the effectiveness of mitigation strategies varies with different farm management systems, topography, stream density, and climate. This paper reviews the cost-effectiveness of mitigation strategies for New Zealand and Australian dairy farms, grouping strategies into (i) management (e.g., decreasing soil test P, fencing streams off from stock, or applying low-water-soluble P fertilizers), (ii) amendments (e.g., alum or red mud [Bauxite residue]), and (iii) edge-of-field mitigations (e.g., natural or constructed wetlands). In general, on-farm management strategies were the most cost-effective way of mitigating P exports (cost range, $0 to $200 per kg P conserved). Amendments, added to tile drains or directly to surface soil, were often constrained by supply or were labor intensive. Of the amendments examined, red mud was cost effective where cost was offset by improved soil physical properties. Edge-of-field strategies, which remove P from runoff (i.e., wetlands) or prevent runoff (i.e., irrigation runoff recycling systems), were generally the least cost effective, but their benefits in terms of improved overall resource efficiency, especially in times of drought, or their effect on other contaminants like N need to be considered. By presenting a wide range of fully costed strategies, and understanding their mechanisms, a farmer or farm advisor is able to choose those that suit their farm and maintain profitability. Further work should examine the potential for targeting strategies to areas that lose the most P in time and space to maximize the cost-effectiveness of mitigation strategies, quantify the benefits of multiple strategies, and identify changes to land use that optimize overall dairy production, but minimize catchment scale, as versus farm scale, nutrient exports.  相似文献   

14.
ABSTRACT: We tested the common assumption, made when expressing phosphorus export on an areal basis, that this export is a linear function of catchment area and found it wanting. The data show that in agricultural catchments, TP (total phosphorus) export varies as the 0.77 power of drainage basin area, resulting in a reduction in phosphorus delivery per unit area with increasing catchment size. Following further division of catchments according to agricultural practice, we found that this spatial scale effect is restricted to row crops and pastures. We present simple statistical models to allow a comparison of TP export from catchments of different size. Such models are not needed for nonrow crops, mixed agricultural and forested catchments, where TP export is a linear function of catchment size.  相似文献   

15.
The international competitiveness of the New Zealand (NZ) dairy industry is built on low cost clover-based systems and a favourable temperate climate that enables cows to graze pastures mostly all year round. Whilst this grazed pasture farming system is very efficient at producing milk, it has also been identified as a significant source of nutrients (N and P) and faecal bacteria which have contributed to water quality degradation in some rivers and lakes. In response to these concerns, a tool-box of mitigation measures that farmers can apply on farm to reduce environmental emissions has been developed. Here we report the potential reduction in nutrient losses and costs to farm businesses arising from the implementation of individual best management practices (BMPs) within this tool-box. Modelling analysis was carried out for a range of BMPs targeting pollutant source reduction on case-study dairy farms, located in four contrasting catchments. Due to the contrasting physical resources and management systems present in the four dairy catchments evaluated, the effectiveness and costs of BMPs varied. Farm managements that optimised soil Olsen P levels or used nitrification inhibitors were observed to result in win-win outcomes whereby nutrient losses were consistently reduced and farm profitability was increased in three of the four case study farming systems. Other BMPs generally reduced nutrient and faecal bacteria losses but at a small cost to the farm business. Our analysis indicates that there are a range of technological measures that can deliver substantial reductions in nutrient losses to waterways from dairy farms, whilst not increasing or even reducing other environmental impacts (e.g. greenhouse gas emissions and energy use). Their implementation will first require clearly defined environmental goals for the catchment/water body that is to be protected. Secondly, given that the major sources of water pollutants often differed between catchments, it is important that BMPs are matched to the physical resources and management systems of the existing farm businesses.  相似文献   

16.
Sediment and total phosphorus (TP) export vary through space and time. This study was conducted to determine the factors controlling sediment and TP export in two agricultural catchments situated in the Belgian Loess Belt. At the outlet of these catchments runoff discharge was continuously measured and suspended sediment samples were taken during rainfall events. Within the catchments vegetation type and cover, soil surface parameters, erosion features, sediment pathways, and rainfall characteristics were monitored. Total P content and sediment characteristics such as clay, organic carbon, and suspended sediment concentration were correlated. Total sediment and TP export differ significantly between the monitored catchments. Much of the difference is due to the occurrence of an extreme event in one catchment and the morphology and spatial organization of land use in the catchments. In one catchment, the direct connection between erosive areas and the catchment outlet by means of a road system contributed to a high sediment delivery ratio (SDR) at the outlet. In the other catchment, the presence of a wide valley in the center of the catchment caused sediment deposition. Vegetation also had an effect on sediment production and deposition. Thus, many factors control sediment and TP export from small agricultural catchments; some of these factors are related to the physical catchment characteristics such as morphology and landscape structure and are (semi)permanent, while others, such as vegetation cover and land use, are time dependent.  相似文献   

17.
This paper examines the issue of disproportionate costs of Water Framework Directive (WFD) implementation using public surveys as a means to inform policy and decision making. Public taxpayers are asked their opinion regarding the implementation of the WFD and its costs. Taxpayers are expected to bear a large share of the cost of WFD implementation, be it through national taxation, local water pollution charges or higher market prices for water related goods and services. The paper's main objective is to illustrate the role of stated preference research to elicit public opinions and perceptions towards socially acceptable levels of water quality and public willingness to pay (WTP) for the expected environmental benefits of the WFD. Stated preference research can be used as a way to assess the concept of disproportionate costs to those who are expected to bear a large share of the costs of WFD implementation, and at the same time address the issue of public participation in the WFD. The survey results are used as a public consultation tool to inform policy and decision makers about public willingness and ability to pay for the implementation of the WFD. This measure can be used as one of the benchmarks to define disproportionate costs in a cost-benefit context.  相似文献   

18.
Community participation in natural resources management is a basis for sustainable management of these resources. However, the question of which actors/assets within communities are more connected to the natural resources based on their knowledge, skills and talents is not well captured. This study, therefore, combines Asset Based Community Development approach and Bio-Cultural approach, to identify influential stakeholders in the utilization of catchment resources in Upper Zigi and Lower Mngeta catchments, in the United Republic of Tanzania. Participatory rural appraisal tools; participatory bio-physical resource mapping (PBRM) and participatory community asset mapping (PCAM) were used for data collection. Similar observations were made in both study sites, that, the most influential community assets were traditional healers, traditional dancers, hunters, Village Government, fishermen, farmers and family, and therefore, these most influential community assets should get involved in the management of catchment resources because they are true representatives of the community.  相似文献   

19.
Abstract: The objective of this study was to use applied and naturally occurring geochemical tracers to study the hydrology of clay settling areas (CSAs) and the hydrological connectivity between CSAs and surrounding hydrological landscapes. The study site is located on the Fort Meade Mine in Polk County, Florida. The CSA has a well‐developed, subangular‐blocky, clay‐rich surface layer with abundant desiccation cracks and other macropores, and a massive, clay‐rich sublayer that is saturated below ~1.0‐2.5 m. A bromide tracer was applied to study hydrological processes in the upper part of the CSA. Bromide infiltrated rapidly and perched on a massive, clay‐rich sublayer. Bromide concentrations decreased in the upper part of the profile without being transported vertically down through the lower part of the profile suggesting that bromide was lost to lateral rather than to vertical transport. Infiltration and lateral flow were rapid suggesting that preferential flow through desiccation cracks and other macropores likely dominates flow in the upper part of the CSA. Naturally occurring solute and stable isotope tracers were used to study the hydrological connectivity between the CSA and the surrounding hydrological landscape. Three‐end mass‐balance mixing model results indicate that shallow and/or deep CSA water can be found in all downgradient waters and must be as much as ~50% of some downgradient waters. Discharge from the CSA to the surrounding surface water‐bodies and surficial aquifer occurs laterally through the berms and/or vertically through the massive, clay‐rich sublayer. However, the precise flow paths from the CSA to the surrounding hydrological landscape are unclear and the fluxes remain unquantified, so the precise effects of CSAs on the hydrology of the surrounding hydrological landscape also remain unquantified.  相似文献   

20.
Both sediment and phosphorus (P) are important contaminants for surface water quality. Knowing the main sources of sediment and P loss within agricultural catchments enables mitigation practices to be better targeted. With this in mind seasonal loads of suspended sediment (SS), dissolved reactive P (DRP), total P (TP), and bioavailable P (BAP) were measured in a low gradient stream draining an intensively farmed New Zealand dairying catchment. Integrating in situ samplers were deployed to collect samples and the results merged with continuous flow data to calculate seasonal loads during 2005 through 2006. Flow rate, SS, and TP concentrations peaked in winter-spring and were lowest in summer-autumn. Concentrations of BAP in trapped sediment were greatest in autumn, contrasting with winter and spring when greater amounts of sediment were trapped, but with lower P enrichment. Analysis of (137)Cs and mixing model output showed that a major source of sediment and associated P in winter and spring was stream banks. Possible causes for this include trampling and destabilization by stock, channel straightening and sediment removal, and removal of riparian trees that stabilize banks. Modelling indicated that overland flow probably from topsoil (but could include sediment from lanes) contributed most sediment during summer and autumn. Remediation aimed at decreasing particulate P inputs to streams should focus on riparian protection measures, such as permanent stock exclusion and planting with shrubs and trees, ensuring runoff from lanes is minimized, and decreasing Olsen P to nearer optimum agronomic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号