首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Fires in mountain big sagebrush [Artemisia tridentata spp. vaseyana (Rydb.) Beetle] plant communities historically shifted dominance from woody to herbaceous vegetation. However, fire return intervals have lengthened with European settlement, and sagebrush dominance has increased at the expense of herbaceous vegetation in some plant communities. Management actions may be needed to decrease sagebrush in dense sagebrush stands to increase herbaceous vegetation. Prescribed fire is often used to remove sagebrush; however, mechanical treatments, such as mowing, are increasingly used because they are more controllable and do not pose an inherent risk of escape compared with fire. However, information on the effects of burned and mowed treatments on herbaceous vegetation and whether fire and mowed applications elicit similar vegetation responses are limited. We evaluated the effects of prescribed burning and mowing for 3?years after treatment in mountain big sagebrush plant communities. The burned and mowed treatments generally increased herbaceous cover, density, and production compared with untreated controls (P??0.05). In contrast, annual forb (predominately natives) cover, density, and biomass increased with mowing and burning (P?相似文献   

2.
Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush (Artemisia tridentata spp. vaseyana (Rydb.) Beetle) steppe has reduced livestock forage production, increased erosion risk, and degraded sagebrush-associated wildlife habitat. Western juniper has been successfully controlled with partial cutting followed by prescribed burning the next fall, but the herbaceous understory and sagebrush may be slow to recover. We evaluated the effectiveness of seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlled by partially cutting and prescribed burning. Treatments tested at each site included an unseeded control, herbaceous seed mix (aerially seeded), and the herbaceous seed mix plus sagebrush seed. In the third year post-treatment, perennial grass cover and density were twice as high in plots receiving the herbaceous seed mix compared to the control plots. Sagebrush cover and density in the sagebrush seeded plots were between 74- and 290-fold and 62- and 155-fold greater than the other treatments. By the third year after treatment, sagebrush cover was as high as 12 % in the sagebrush seeded plots and between 0 % and 0.4 % where it was not seeded. These results indicate that aerial seeding perennial herbaceous vegetation can accelerate the recovery of perennial grasses which likely stabilize the site. Our results also suggest that seeding mountain big sagebrush after prescribed burning encroaching juniper can rapidly recover sagebrush cover and density. In areas where sagebrush habitat is limited, seeding sagebrush after juniper control may increase sagebrush habitat and decrease the risks to sagebrush-associated species.  相似文献   

3.
Wyoming big sagebrush (Artemisia tridentata wyomingensis A. t. Nutt. ssp. wyomingensis Beetle and Young) communities provide structure and forbs and insects needed by greater sage-grouse (Centrocercus urophasianus) for growth and survival. We evaluated forb, insect, and soil responses at six mowed and 19 prescribed burned sites compared to 25, paired and untreated reference sites. Sites were classified by treatment type, soil type, season, and decade of treatment (sites burned during 1990–1999 and sites burned or mowed during 2000–2006). Our objective was to evaluate differences in ten habitat attributes known to influence sage-grouse nesting and brood rearing to compare responses among treatment scenarios. Contrary to desired outcomes, treating Wyoming big sagebrush through prescribed burning or mowing may not stimulate cover or increase nutrition in food forbs, or increase insect abundance or indicators of soil quality compared with reference sites. In some cases, prescribed burning showed positive results compared with mowing such as greater forb crude protein content (%), ant (Hymenoptera; no./trap), beetle (Coleoptera/no./trap), and grasshopper abundance (Orthoptera; no./sweep), and total (%) soil carbon and nitrogen, but of these attributes, only grasshopper abundance was enhanced at burned sites compared with reference sites in 2008. Mowing did not promote a statistically significant increase in sage-grouse nesting or early brood-rearing habitat attributes such as cover or nutritional quality of food forbs, or counts of ants, beetles, or grasshoppers compared with reference sites.  相似文献   

4.
The effects of prescribed burning on forage abundance and suitability for elk (Cervus elaphus) during the snow-free season was evaluated in east-central Banff National Park, Canada. Six coniferous forest and mixed shrub-herb plant communities (n=144 plots), and 5223ha of burned (n=131) vegetation <12 years old were sampled using a stratified semi-random design. Sampling units represented various combinations of vegetation, terrain conditions, and stand ages that were derived from digital biophysical data, with plant communities the basic unit of analysis. Burning coniferous forest stands reduced woody biomass, and increased herbaceous forage from 146 to 790 kg/ha. Increases commonly occurred in the percent cover of hairy wild rye (Leymus innovatus (Beal) Pigler) and fireweed (Chamerion angustifolium (L.) Holub.). The herbaceous components of mixed shrub-herb communities increased from 336-747 kg/ha to 517-1104 kg/ha in response to burning (P<0.025, Mann-Whitney U-test). Browse biomass (mostly Salix spp. and Betula nana L.) increased >or=220% (P相似文献   

5.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities frequently are mowed in an attempt to increase perennial herbaceous vegetation. However, there is limited information as to whether expected benefits of mowing are realized when applied to Wyoming big sagebrush communities with intact understory vegetation. We compared vegetation and soil nutrient concentrations in mowed and undisturbed reference plots in Wyoming big sagebrush plant communities at eight sites for three years post-treatment. Mowing generally did not increase perennial herbaceous vegetation cover, density, or biomass production (P > 0.05). Annual forbs and exotic annual grasses were generally greater in the mowed compared to the reference treatment (P < 0.05). By the third year post-treatment annual forb and annual grass biomass production was more than nine and sevenfold higher in the mowed than reference treatment, respectively. Our results imply that the application of mowing treatments in Wyoming big sagebrush plant communities does not increase perennial herbaceous vegetation, but may increase the risk that exotic annual grasses will dominate the herbaceous vegetation. We suggest that mowing Wyoming big sagebrush communities with intact understories does not produce the expected benefits. However, the applicability of our results to Wyoming big sagebrush communities with greater sagebrush cover and/or degraded understories needs to be evaluated.  相似文献   

6.
Prescribed fire is a common site preparation practice in forest management in southern China. However, the effect of fire on soil properties and N transformations is still poorly understood in this region. In this study, soil properties and N transformations in burned and unburned site of two vegetation types (Eucalyptus plantation and shrubland) were compared in rainy and dry seasons after 2 years’ prescribed fire. Soil pH and soil NH4-N were all higher in the burned site compared to the unburned control. Furthermore, burned sites had 30–40 % lower of soil total phosphorus than conspecific unburned sites. There was no difference in soil organic matter, total N, soil exchangeable cations, available P or NO3-N. Nitrogen mineralization rate of 0–5 cm soil in the unburned site ranged from 8.24 to 11.6 mg N kg?1 soil month?1 in the rainy season, compared to a lower level of 4.82–5.25 mg N kg?1 soil month?1 in the burned sites. In contrast, 0–5 cm layer nitrification rate was overall 2.47 mg N kg?1 soil month?1 in the rainy season, and was not significantly affected by burning. The reduced understory vegetation coverage after burning may be responsible for the higher soil NH4-N in the burned site. This study highlights that a better understanding the effect of prescribed burning on soil nutrients cycling would provide a critical foundation for management decision and be beneficial to afforestation in southern China.  相似文献   

7.
To better understand the role of herbivory and fire as potential disturbance processes in sagebrush communities, we examined responses of a grazing ungulate, elk (Cervus elaphus), following prescribed burning of sagebrush (Artemisia tridentata ssp. vaseyana) in south-central Montana (USA.) with concurrent monitoring of changes in plant production, nutritional quality, and community diversity from 1989–1999. Burning transformed low-diversity, sagebrush-dominated communities into high-diversity, graminoid-forb communities that persisted for 10 years without significant reestablishment of sagebrush. Elk increased use of burned sites one year after burning, but elk use returned to pre-burn levels over the next two to nine years. Forage biomass and nutritional quality declined after initial increases that coincided with increased elk use. Increases in elk use appeared to be influenced by increases in combined graminoid and forb production and changes in structural vegetation characteristics that permitted greater foraging efficiency. Declines in use were associated with loss of nutritional enhancement and declines in combined graminoid and forb production. Managers may observe only short-term responses from grazing ungulates to prescribed fire in sagebrush communities, but can expect longer-term increases in plant diversity and establishment of graminoid-forb communities.  相似文献   

8.
Since the mid-1980s, sagebrush rangelands in the Great Basin of the United States have experienced more frequent and larger wildfires. These fires affect livestock forage, the sagebrush/grasses/forbs mosaic that is important for many wildlife species (e.g., the greater sage grouse (Centrocercus urophasianus)), post-fire flammability and fire frequency. When a sagebrush, especially a Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young)), dominated area largely devoid of herbaceous perennials burns, it often transitions to an annual dominated and highly flammable plant community that thereafter excludes sagebrush and native perennials. Considerable effort is devoted to revegetating rangeland following fire, but to date there has been very little analysis of the factors that lead to the success of this revegetation. This paper utilizes a revegetation monitoring dataset to examine the densities of three key types of vegetation, specifically nonnative seeded grasses, nonnative seeded forbs, and native Wyoming big sagebrush, at several points in time following seeding. We find that unlike forbs, increasing the seeding rates for grasses does not appear to increase their density (at least for the sites and seeding rates we examined). Also, seeding Wyoming big sagebrush increases its density with time since fire. Seeding of grasses and forbs is less successful at locations that were dominated primarily by annual grasses (cheatgrass (Bromus tectorum L.)), and devoid of shrubs, prior to wildfire. This supports the hypothesis of a "closing window of opportunity" for seeding at locations that burned sagebrush for the first time in recent history.  相似文献   

9.
Big sagebrush (Artemisia tridentata Nutt.) occupies large portions of the western United States and provides valuable wildlife habitat. However, information is lacking quantifying differences in native perennial forb characteristics between mountain big sagebrush [A. tridentata spp. vaseyana (Rydb.) Beetle] and Wyoming big sagebrush [A. tridentata spp. wyomingensis (Beetle & A. Young) S.L. Welsh] plant communities. This information is critical to accurately evaluate the quality of habitat and forage that these communities can produce because many wildlife species consume large quantities of native perennial forbs and depend on them for hiding cover. To compare native perennial forb characteristics on sites dominated by these two subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Mountain big sagebrush plant communities produced almost 4.5-fold more native perennial forb biomass and had greater native perennial forb species richness and diversity compared to Wyoming big sagebrush plant communities (P < 0.001). Nonmetric multidimensional scaling (NMS) and the multiple-response permutation procedure (MRPP) demonstrated that native perennial forb composition varied between these plant communities (P < 0.001). Native perennial forb composition was more similar within plant communities grouped by big sagebrush subspecies than expected by chance (A = 0.112) and composition varied between community groups (P < 0.001). Indicator analysis did not identify any perennial forbs that were completely exclusive and faithful, but did identify several perennial forbs that were relatively good indicators of either mountain big sagebrush or Wyoming big sagebrush plant communities. Our results suggest that management plans and habitat guidelines should recognize differences in native perennial forb characteristics between mountain and Wyoming big sagebrush plant communities.  相似文献   

10.
ABSTRACT: Effects of long-term prescribed burning on infiltration and interrill erosion were assessed on two longleaf pine-bluestem sites in Louisiana. Treatments represented biennially-applied winter, spring, or summer burning on an upland sandy loam site for 20 years; and annual winter or spring, and biennial winter or spring burns on a bottomland silt loam site for 10 years, with unburned controls. Immediate effects of burning were a reduction in surface cover, exposing soil to raindrop impact. Burning the sandy loam site increased interrill erosion after winter and spring treatments, but produced no immediate changes in infiltration capacity or time to runoff irrespective of treatment season. Rapid recovery of under-story vegetation mitigated soil exposure. Biennial burning did not increase interrill erosion, or reduce infiltration capacity and time to runoff on the sandy loam site after 20 years. A complete herbaceous understory covered the silt loam site two years after treatment. Interrill erosion was not significantly increased, or infiltration capacity and time to runoff decreased on burning treatments than unburned controls on the silt loam site. Litter biomass was important in predicting interrill erosion. No surface cover condition could be linked to variability in infiltration capacity. This study provides evidence for the resiliency of a longleaf pine-bluestem association to prescribed burning.  相似文献   

11.
In this paper, we describe a model designed to simulate seasonal dynamics of warm and cool season grasses and forbs, as well as the dynamics of woody plant succession through five seral stages, in each of nine different plant communities on the Rob and Bessie Welder Wildlife Refuge. The Welder Wildlife Refuge (WWR) is located in the Gulf Coastal Prairies and Marshes ecoregion of Texas. The model utilizes and integrates data from a wide array of research projects that have occurred in south Texas and WWR. It is designed to investigate the effects of alternative livestock grazing programs and brush control practices, with particular emphasis on prescribed burning, the preferred treatment for brush on the WWR. We evaluated the model by simulating changes in the plant communities under historical (1974-2000) temperature, rainfall, livestock grazing rotation, and brush control regimes, and comparing simulation results to field data on herbaceous biomass and brush canopy cover collected on the WWR over the same period. We then used the model to simulate the effects of 13 alternative management schemes, under each of four weather regimes, over the next 25 years. We found that over the simulation period, years 1974-2000, the model does well in simulating the magnitude and seasonality of herbaceous biomass production and changes in percent brush canopy cover on the WWR. It also does well in simulating the effects of variations in cattle stocking rates, grazing rotation programs, and brush control regimes on plant communities, thus providing insight into the combined effects of temperature, precipitation, cattle stocking rates, grazing rotation programs, and brush control on the overall productivity and state of woody plant succession on the WWR. Simulation of alternative management schemes suggests that brush canopy removal differs little between summer and winter prescribed burn treatments when precipitation remains near the long-term average, but during periods of low precipitation canopy removal is greater under winter prescribed burning. The model provides a useful tool to assist refuge personnel with developing long-term brush management and livestock grazing strategies.  相似文献   

12.
Prescribed burning is commonly used to prevent accumulation of biomass in fire-prone shrubland in NW Spain. However, there is a lack of knowledge about the efficacy of the technique in reducing fire hazard in these ecosystems. Fire hazard in burned shrubland areas will depend on the initial capacity of woody vegetation to recover and on the fine ground fuels existing after fire. To explore the effect that time since burning has on fire hazard, experimental tests were performed with two fuel complexes (fine ground fuels and regenerated shrubs) resulting from previous prescribed burnings conducted in a gorse shrubland (Ulex europaeus L.) one, three and five years earlier. A point-ignition source was used in burning experiments to assess ignition and initial propagation success separately for each fuel complex. The effect of wind speed was also studied for shrub fuels, and several flammability parameters were measured. Results showed that both ignition and initial propagation success of fine ground fuels mainly depended on fuel depth and were independent of time since burning, although flammability parameters indicated higher fire hazard three years after burning. In contrast, time since burning increased ignition and initial propagation success of regenerated shrub fuels, as well as the flammability parameters assessed, but wind speed had no significant effect. The combination of results of fire hazard for fine ground fuels and regenerated shrubs according to the variation in relative coverage of each fuel type after prescribed burning enabled an assessment of integrated fire hazard in treated areas. The present results suggest that prescribed burning is a very effective technique to reduce fire hazard in the study area, but that fire hazard will be significantly increased by the third year after burning. These results are valuable for fire prevention and fuel management planning in gorse shrubland areas.  相似文献   

13.
Redistribution of soil, nutrients, and contaminants is often driven by wind erosion in semiarid shrublands. Wind erosion depends on wind velocity (particularly during episodic, high-velocity winds) and on vegetation, which is generally sparse and spatially heterogeneous in semiarid ecosystems. Further, the vegetation cover can be rapidly and greatly altered due to disturbances, particularly fire. Few studies, however, have evaluated key temporal and spatial components of wind erosion with respect to (i) erosion rates on the scale of weeks as a function of episodic high-velocity winds, (ii) rates at unburned and burned sites, and (iii) within-site spatial heterogeneity in erosion. Measuring wind erosion in unburned and recently burned Chihuahuan desert shrubland, we found (i) weekly wind erosion was related more to daily peak wind velocities than to daily average velocities as consistent with our findings of a threshold wind velocity at approximately 7 m s(-1); (ii) greater erodibility in burned vs. unburned shrubland as indicated by erosion thresholds, aerodynamic roughness, and nearground soil movement; and (iii) burned shrubland lost soil from intercanopy and especially canopy patches in contrast to unburned shrubland, where soil accumulated in canopy patches. Our results are among the first to quantify post-fire wind erosion and highlight the importance of accounting for finer temporal and spatial variation in shrubland wind erosion. This finer-scale variation relates to semiarid land degradation, and is particularly relevant for predictions of contaminant resuspension and redistribution, both of which historically ignore finer-scale temporal and spatial variation in wind erosion.  相似文献   

14.
Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.  相似文献   

15.
Shrub-Steppe Early Succession Following Juniper Cutting and Prescribed Fire   总被引:1,自引:0,他引:1  
Pinus-Juniperus L. (Piñon-juniper) woodlands of the western United States have expanded in area nearly 10-fold since the late 1800’s. Juniperus occidentalis ssp. occidentalis Hook. (western juniper) dominance in sagebrush steppe has several negative consequences, including reductions in herbaceous production and diversity, decreased wildlife habitat, and higher erosion and runoff potentials. Prescribed fire and mechanical tree removal are the main methods used to control J. occidentalis and restore sagebrush steppe. However, mature woodlands become difficult to prescribe burn because of the lack of understory fuels. We evaluated partial cutting of the woodlands (cutting 25–50% of the trees) to increase surface fuels, followed by prescribed fire treatments in late successional J. occidentalis woodlands of southwest Idaho to assess understory recovery. The study was conducted in two different plant associations and evaluated what percentage of the woodland required preparatory cutting to eliminate remaining J. occidentalis by prescribed fire, determined the impacts of fire to understory species, and examined early post-fire successional dynamics. The study demonstrated that late successional J. occidentalis woodlands can be burned after pre-cutting only a portion of the trees. Early succession in the cut-and-burn treatments were dominated by native annual and perennial forbs, in part due to high mortality of perennial bunchgrasses. By the third year after fire the number of establishing perennial grass seedlings indicated that both associations would achieve full herbaceous recovery. Cutting-prescribed fire combinations are an effective means for controlling encroaching late successional J. occidentalis and restoring herbaceous plant communities. However, land managers should recognize that there are potential problems associated with cutting-prescribed fire applications when invasive weeds are present.  相似文献   

16.
The high degree of physical disturbance associated with conventional response options to oil spills in wetlands is driving the investigation of alternative cleanup methodologies. In March 1995, a spill of gas condensate in a brackish marsh at Rockefeller Wildlife Refuge in southwestern Louisiana was remediated through the use of in situ burning. An assessment of vegetation recovery was initiated in three treatment marshes: (1) oil-impacted and burned, (2) oil impacted and unburned, and (3) a nonoiled unburned reference. We compared percent cover, stem density, and biomass in the treatment marshes to define ecological recovery of the marsh vegetation and soil hydrocarbon content to determine the efficacy of in situ burning as a cleanup technique. Burning led to a rapid decrease in soil hydrocarbon concentrations in the impacted-and-burned marsh to background levels by the end of the first growing season. Although a management fire accidentally burned the oil-impacted-and-unburned and reference marshes in December 1995, stem density, live biomass, and total percent cover values in the oil-impacted-and-burned marsh were equivalent to those in the other treatment marshes after three years. In addition, plant community composition within the oil-impacted-and-burned marsh was similar to the codominant mix of the grasses Distichlis spicata (salt grass) and Spartina patens (wire grass) characteristic of the surrounding marsh after the same time period. Rapid recovery of the oil-impacted-and-unburned marsh was likely due to lower initial hydrocarbon exposure. Water levels inundating the soil surface of this grass-dominated marsh and the timing of the in situ burn early in the growing season were important factors contributing to the rapid recovery of this wetland. The results of this in situ burn evaluation support the conclusion that burning, under the proper conditions, can be relied upon as an effective cleanup response to hydrocarbon spills in herbaceous wetlands.  相似文献   

17.
The purpose of this study was to provide the National Park Service with quantitative information regarding the effect of fire on fuel loads and pest species such asLonicera japonica, Ligustrum sinense, andRhus radicans.Three study areas of ten plots each were located in Chickamauga Battlefield Reservation of the Chickamauga and Chattanooga National Military Park. Fuel weights, aboveground biomass of honeysuckle, and counts of privet and poison ivy were collected both before and after prescribed fire. Additionally, one fourth of each of 14 plots was treated with glyphosate (tradename Roundup) to test for the use of fire as a herbicide pretreatment. This was a randomized block design with subsampling.Prescribed burning did significantly ( = 0.05) reduce fuel loads and the biomass of honeysuckle on burned plots. There was a statistically different response in fuel load reduction between fall and winter burns. Poison ivy significantly increased on burned plots, while privet counts did not vary significantly.Applications of glyphosate negatively impacted all three target species. Honeysuckle appeared to be damaged more readily on untreated plots, while no difference in response was noted on privet. Significantly more poison ivy growing points were killed by herbicide applications on burned plots than on unburned plots.  相似文献   

18.
Selective grazing of burned patches can be intense if animal distribution is not controlled and may compound the independent effects of fire and grazing on soil characteristics. Our objectives were to quantify the effects of patch burning and grazing on wind erosion, soil water content, and soil temperature in sand sagebrush (Artemisia filifolia Torr.) mixed prairie. We selected 24, 4-ha plots near Woodward, OK. Four plots were burned during autumn (mid-November) and four during spring (mid-April), and four served as nonburned controls for each of two years. Cattle were given unrestricted access (April-September) to burned patches (<2% of pastures) and utilization was about 78%. Wind erosion, soil water content, and soil temperature were measured monthly. Wind erosion varied by burn, year, and sampling height. Wind erosion was about 2 to 48 times greater on autumn-burned plots than nonburned plots during the dormant period (December-April). Growing-season (April-August) erosion was greatest during spring. Erosion of spring-burned sites was double that of nonburned sites both years. Growing-season erosion from autumn-burned sites was similar to nonburned sites except for one year with a dry April-May. Soil water content was unaffected by patch burn treatments. Soils of burned plots were 1 to 3 degrees C warmer than those of nonburned plots, based on mid-day measurements. Lower water holding and deep percolation capacity of sandy soils probably moderated effects on soil water content and soil temperature. Despite poor growing conditions following fire and heavy selective grazing of burned patches, no blowouts or drifts were observed.  相似文献   

19.
Herb layer contributes substantially to the species diversity of forests and responds relatively quickly to changes in the environment. The objectives of the present study were to understand the relationships among tree canopy cover, soil moisture, light intensity, herbaceous diversity and biomass in a dry tropical forest of India. For this, 20 locations equally distributed in four sites were selected. Four quadrats, each 1?×?1?m in size, were randomly placed for sampling at each location. For each quadrat, tree canopy cover, incident light, soil moisture, herbaceous diversity, and biomass were determined. Results indicated that the selected locations differed in terms of tree canopy cover, soil moisture, light intensity, herbaceous diversity, and biomass. Principal component analysis (PCA), using importance value indices of the component species yielded four groups corresponding to the four communities. PCA axes were related to the tree canopy cover, light intensity, and soil moisture and suggested that these variables had a profound effect on the organization and determination of herbaceous floristic composition and diversity. Positive relationships of tree canopy cover with soil moisture, herbaceous diversity and biomass, and those of soil moisture with herbaceous diversity and biomass suggested that the tree canopies facilitated the herbaceous communities by modifying environmental conditions that ultimately improved the diversity and production. Further, the study showed a linear relationship of herbaceous diversity with biomass, indicating the importance of species diversity for generating primary production in forest herbs.  相似文献   

20.
Spermophilus townsendii ) prey. These changes could occur directly or as a result of changes in the vegetation available as food and cover for the ground squirrels. We assessed the effects of long-term tracking by armored vehicles by comparing 9-ha areas in sagebrush (Artemisia tridentata) -dominated shrubsteppe and bluegrass (Poa secunda) -dominated grasslands subjected to low-intensity tracking for ∼50 years with others that had not been tracked. We did not detect any effect on ground squirrel population dynamics associated with long-term tracking. Although densities of adults and juveniles tended to be higher in the areas exposed to such tracking, we attribute this difference to other factors that varied spatially. To determine short-term (two-year) effects, we experimentally tracked two sagebrush and two grassland sites with an M-1 tank after animals had begun their inactive season. In the following two active seasons we monitored squirrel demography and behavior and vegetative characteristics on the experimentally tracked sites and compared the results with control sites. Although we experimentally tracked ∼33% of the surface of each of four sites where ground squirrel densities were assessed, the tracking had a detectable effect only on some herbaceous perennials and did not influence ground squirrel densities or behavior significantly during the subsequent two active seasons. We conclude that tracking after the start of the inactive season is likely to influence ground squirrel demography or behavior only if vegetation cover is substantially changed by decreasing coverage of preferred food plants or increasing the coverage of annual grasses and forbs that are succulent for only a short time each year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号