首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate procedures that measure hydrologic variability would have great value for evaluating ecosystem impacts of upstream water use in the Colorado River Basin. Many local extractive income-based stakeholders rely directly or indirectly on ecosystem health and are adversely affected when the river does not flow. This study focuses on the impact of little or no Colorado River flow on the Mexican shrimp industry. Although there have been complaints that U.S. diversions of Colorado River flow have greatly impaired the shrimp fishery, this research demonstrates that freshwater rarely reaches the Gulf even during times of flooding, and that other factors such as overfishing may influence the instability of shrimp populations. Advanced very-high-resolution radiometer (AVHRR) satellite imagery was used to assess water volumes diverted away from the channel of the Colorado River and ultimately the Gulf of California during flooding periods. Analysis of data demonstrated that little freshwater actually reaches the Gulf even during floods because of its diversion into a large dry lake bed basin known as Laguna Salada. Fuller use of the Colorado River throughout its entire course to the sea is possible and could benefit a large cohort of users without catastrophic habitat destruction in delta ecosystems. Reconstruction of a natural earthen berm, as proposed by Ducks Unlimited, would maximize the use of floodwaters for ecosystem benefits. These findings have profound implications for local economic activities dependent on hydrologic resources in the Colorado River Delta and Upper Gulf.  相似文献   

2.
ABSTRACT: The Gunnison River drains a mountainous basin in western Colorado, and is a large contributor of water to the Colorado River. As part of a study to assess water resource sensitivity to alterations in climate in the Gunnison River basin, climatic and hydrologic processes are being modeled. A geographic information system (GIS) is being used in this study as a link between data and modelers - serving as a common data base for project personnel with differing specialties, providing a means to investigate the effects of scale on model results, and providing a framework for the transfer of parameter values among models. Specific applications presented include: (1) developing elevation grids for a precipitation model from digital elevation model (DEM) point-elevation values, and visualizing the effects of grid resolution on model results; (2) using a GIS to facilitate the definition and parameterization of a distributed-parameters, watershed model in multiple basins; and (3) nesting atmospheric and hydrologic models to produce possible scenarios of climate change.  相似文献   

3.
ABSTRACT: The waters of the Colorado River are divided among seven states according to a complex ‘Law of the River’ drawn from interstate compacts, international treaties, statutes, and regulations. The Law of the River creates certain priorities among the states and the Republic of Mexico, and in the event of a severe sustained drought, the Law of the River dictates the distribution of water and operation of the elaborate reservoir system. Earlier work indicated that there is remarkable resilience in the system for established uses of water in the Lower Basin of the Colorado River. This work shows, based on an application of the Law of the River using computer modeling of operations of facilities on the Colorado River, that there may be serious environmental consequences and related legal restraints on how the water is used in times of shortage and that the existing legal and institutional framework governing the Colorado River does not adequately address all the issues that would be raised in a severe sustained drought. Several possible legal options for dealing with drought in the context of the Law of the River are identified.  相似文献   

4.
ABSTRACT: In many interstate river basins, the institutional arrangements for the governance and management of the shared water resource are not adequately designed to effectively address the many political, legal, social, and economic issues that arise when the demands on the resource exceed the available supplies. Even under normal hydrologic conditions, this problem is frequently seen in the Colorado River Basin. During severe sustained drought, it is likely that the deficiencies of the existing arrangements would present a formidable barrier to an effective drought response, interfering with efforts to quickly and efficiently conserve and reallocate available supplies to support a variety of critical needs. In the United States, several types of regional arrangements are seen for the administration of interstate water resources. These arrangements include compact commissions, interstate councils, basin interagency committees, interagency-interstate commissions, federal-interstate compact commissions, federal regional agencies, and the single federal administrator. Of these options, the federal-interstate compact commission is the most appropriate arrangement for correcting the current deficiencies of the Colorado River institution, under all hydrologic conditions.  相似文献   

5.
ABSTRACT: To help meet national energy demands, interest has been focused on the coal, oil shale, and uranium deposits of the Upper Colorado River Basin. Several energy output projections for the basin have been presented based upon water availability. Inherent in all these analyses are estimates as to the rate of water use in each energy development. New energy technologies are characterized by parameters extrapolated from small scale energy facilities. The data provide projected costs, conversion efficiencies, and material inputs and outputs. Alternative techniques for process cooling and solids handling provide variable rates of water use which affect other conversion parameters. Results from a mathematical model are used in analyzing the sensitivity of an optimal energy development strategy for the Upper Colorado River Basin. The impacts of alternative water use rates are investigated in terms of net energy output, total cost, and displacements in the development strategy. Similarly, controls and regulations on energy resource development are evaluated.  相似文献   

6.
ABSTRACT: The indexed sequential hydrologic modeling (ISM) methodology is utilized by the Western Area Power Administration as the basis for risk-based estimation of project-dependable hydropower capacity for several federally owned/operated projects. ISM is a technique based on synthetic generation of a series of overlapping short-term inflow sequences obtained directly from the historical record. The validity of ISM is assessed through application to the complex multireservoir hydropower system of the Colorado River basin for providing risk estimates associated with determination of reliable hydrogeneration capacity. Performance of ISM is compared with results from stochastically generated streamflow input data to the Colorado River Simulation System (CRSS). Statistical analysis and comparison of results are based on monthly power capacity, energy generation, and downstream water deliveries. Results indicate that outputs generated from ISM synthetically generated sequences display an acceptable correspondence with those obtained from stochastically generated hydrologic data for the Colorado River Basin.  相似文献   

7.
ABSTRACT: Researchers representing each of the Colorado River Basin states as well as the Secretary of the Interior were presented with an interactive computer simulation of a progressively increasing drought and were given the collective opportunity to change the ways in which basin-wide and within-state water management were conducted. The purpose of this “gaming” exercise was to identify rules for managing the Colorado River which are effective in preventing drought-caused damages to basin water users. This water management game was conducted three times, varying the collective choice roles for management of the river yet staying substantially within the current institution for management of the Colorado River known as the “Law of the River.” The Law of the River was quite effective in minimizing drought impacts upon consumptive water uses. Additional effective drought-coping measures to protect consumptive uses consisted mostly of intrastate water management improvements which states were able to implement independently. The Law of the River did not protect non-consumptive water uses, such as hydroelectric power generation, water-based recreation, endangered species, and water quality from drought, as well as it protected consumptive water uses. Players reached collective choice decisions to cope with rising salinity, equalize storage between the upper and lower basins, and protect endangered species. While these measures had some success, only reductions in withdrawals for consumptive uses, particularly in the upper basin, could have substantially lessened adverse impacts.  相似文献   

8.
ABSTRACT: The impacts of a severe sustained drought on Colorado River system water resources were investigated by simulating the physical and institutional constraints within the Colorado River Basin and testing the response of the system to different hydrologic scenarios. Simulations using Hydrosphere's Colorado River Model compared a 38-year severe sustained drought derived from 500 years of reconstructed streamflows for the Colorado River basin with a 38-year streamflow trace extracted from the recent historic record. The impacts of the severe drought on streamflows, water allocation, storage, hydropower generation, and salinity were assessed. Estimated deliveries to consumptive uses in the Upper Basin states of Colorado, Utah, Wyoming, New Mexico, and northern Arizona were heavily affected by the severe drought, while the Lower Basin states of California, Nevada, and Arizona suffered only slight shortages. Upper Basin reservoirs and streamflows were also more heavily affected than those in the Lower Basin by the severe drought. System-wide, total hydropower generation was 84 percent less in the drought scenario than in the historical stream-flow scenario. Annual, flow-weighted salinity below Lake Mead exceeded 1200 ppm for six years during the deepest portion of the severe drought. The salinity levels in the historical hydrology scenario never exceeded 1100 ppm.  相似文献   

9.
Water development in the Green River Basin of Wyoming is projected to increase salinity downstream in the Green River and Colorado River, and thereby increase salinity costs to users of water from these two rivers. Despite these water quality and economic impacts to downstream water users, Wyoming will probably be able to develop its currently unused but allocated water supplies of the Green River Basin. The Colorado River Compact and Upper Colorado River Basin Compact are binding, and protect Wyoming's share of the Colorado River System waters for future use. The argument that water may be used to greater profit downstream is not sufficient to reduce Wyoming's allocation. In addition, the no-injury rule under the appropriation doctrine of law does not appear to protect prior downstream appropriations from increasing salinity in this case.  相似文献   

10.
Wildman, Richard A., Jr. and Noelani A. Forde, 2012. Management of Water Shortage in the Colorado River Basin: Evaluating Current Policy and the Viability of Interstate Water Trading. Journal of the American Water Resources Association (JAWRA) 48(3): 411-422. DOI: 10.1111/j.1752-1688.2012.00665.x Abstract: The water of the Colorado River of the southwestern United States (U.S.) is presently used beyond its reliable supply, and the flow of this river is forecast to decrease significantly due to climate change. A recent interim report of the Colorado River Basin Water Supply and Demand Study is the first acknowledgment of these facts by U.S. federal water managers. In light of this new stance, we evaluate the current policy of adaptation to water shortages in the Colorado River Basin. We find that initial shortages will be borne only by the cities of Arizona and Nevada and farms in Arizona whereas the other Basin states have no incentive to reduce consumptive use. Furthermore, the development of a long-term plan is deferred until greater water scarcity exists. As a potential response to long-term water scarcity, we evaluate the viability of an interstate water market in the Colorado River Basin. We inform our analysis with newly available data from the Murray-Darling Basin of Australia, which has used interstate water trading to create vital flexibility during extreme aridity during recent years. We find that, despite substantial obstacles, an interstate water market is a compelling reform that could be used not only to adapt to increased water scarcity but also to preserve core elements of Colorado River Basin law.  相似文献   

11.
Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests.  相似文献   

12.
ABSTRACT: Frequent and persistent droughts exacerbate the problems caused by the inherent scarcity of water in the semiarid to arid parts of the southwestern United States. The occurrence of drought is driven by climatic variability, which for years before about the beginning of the 20th century in the Southwest must be inferred from proxy records. As part of a multidisciplinary study of the potential hydrologic impact of severe sustained drought on the Colorado River, the physical basis and limitations of tree rings as indicators of severe sustained drought are reviewed, and tree-ring data are analyzed to delineate a “worst-case” drought scenario for the Upper Colorado River Basin (UCRB). Runs analysis of a 121-site tree-ring network, 1600–1962, identifies a four-year drought in the 1660s as the longest-duration large-scale drought in the Southwest in the recent tree-ring record. Longer tree-ring records suggest a much longer and more severe drought in 1579–1598. The regression estimate of the mean annual Colorado River flow for this period is 10.95 million acre-feet, or 81 percent of the long-term mean. The estimated flows for the 1500s should be used with caution in impact studies because sample size is small and some reconstructed values are extrapolations.  相似文献   

13.
ABSTRACT: The Upper Colorado River Basin contains appreciable amounts of undeveloped fuel resources. Large quantities of oil shale, coal, and uranium have attracted recent economic and commercial interests. Development of these resources and subsequent conversion to alternative energy forms require an adequate supply of water. Water use for large scale energy development will place increasing demands on an already overstressed allocation of Colorado River water. Present water quality is at a concentration where increased salinity will result in economic detriments to holders of downstream water rights. The salt and water exchange in mining, processing, and spent fuel disposal processes has been incorporated as part of a two-level minimum cost linear programming algorithm. Mathematical simulation results provide an optimal use of Upper Colorado River water for levels of energy output such that salinity concentrations are maintained below predetermined levels.  相似文献   

14.
ABSTRACT: Effective planning for use of water resources requires accurate information on hydrologic variability induced by climatic fluctuations. Tree-ring analysis is one method of extending our knowledge of hydrologic variability beyond the relatively short period covered by gaged streamflow records. In this paper, a network of recently developed tree-ring chronologies is used to reconstruct annual river discharge in the upper Gila River drainage in southeastern Arizona and southwestern Arizona since A.D. 1663. The need for data on hydrologic variability for this semi-arid basin is accentuated because water supply is inadequate to meet current demand. A reconstruction based on multiple linear regression (R2=0.66) indicates that 20th century is unusual for clustering of high-discharge years (early 1900s), severity of multiyear drought (1950s), and amplification of low-frequency discharge variations. Periods of low discharge recur at irregular intervals averaging about 20 years. Comparison with other tree-ring reconstructions shows that these low-flow periods are synchronous from the Gila Basin to the southern part of the Upper Colorado River Basin.  相似文献   

15.
ABSTRACT: Major water rights adjudications involving the Little Colorado River Basin and Gila River Basin are presently underway within Arizona. Water resource managers are faced with the prospect of evaluating and regulating tens of thousands of water diversions and uses. Stockponds comprise a large percentage of the total number of water diversions within these basins. Water balance studies conducted on the Little Colorado River watershed above Lyman Lake and on the Gila River watershed above Solomon, Arizona, indicate that the impact of stockponds on the water available to downstream users is insignificant when compared to total watershed production. Considering that there are an estimated 25,000 stockponds in the Gila River basin alone, rigorous case-by-case investigations and stringent regulation of individual stockponds may be impractical and unwarranted. Therefore, stock-pond claims within the context of the general adjudication process may be effectively handled by partial summary judgment, thereby allowing the court to concentrate on major water users and water rights issues.  相似文献   

16.
Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.  相似文献   

17.
ABSTRACT: A selenium budget for Lake Powell, Utah-Arizona was determined based on selenium loads at the principal stream input sites to and the output site from the lake. Based on data collected during 1985-1994, 83 percent of the selenium entering Lake Powell is accounted for at the output site. The rest of the selenium may be incorporated by lake sediment or used by the biota. Considerably more selenium per unit area is produced from the Colorado River Basin above the Colorado River-Green River confluence than from the Green River Basin and the San Juan River Basin combined. The Gunnison River Basin and the Grand Valley in Colorado produce an estimated 31 and 30 percent of the selenium that reaches Lake Powell, respectively. Irrigation-related activities are thought to be responsible for mobilizing 71 percent of the selenium that reaches Lake Powell. Selenium concentrations in water at Imperial Dam on the Colorado River upstream of the United States-Mexico international border are similar to those at the output site of Lake Powell. Therefore, most selenium observed in downstream areas of the Colorado River therefore probably is derived mostly from the Colorado River Basin above Lake Powell.  相似文献   

18.
ABSTRACT: Problems of water quality and quantity are critical to development of the energy resources of the Western U. S. Based on a number of independent measures, the Upper Colorado River Basin will experience severe water availability problems in a few decades if projected energy and agricultural development occurs. Given the impending collision between the competing interests of various Western water users, water resource management and conservation deserves the utmost attention. Substantial opportunities for conservation exist in energy and agricultural development. Selection of both conversion and cooling technologies and careful siting decisions can sharply reduce the water requirements of energy development. Agricultural water conservation strategies include improving irrigation and cultivation practices, removing phreatophytes, removing marginal lands from production, and changing crop patterns. In order to accomplish significant conservation, however, there must be changes in those aspects of Western water law that remove conservation incentives from the water use system.  相似文献   

19.
何艳梅 《中国环境管理》2021,13(2):110-118,9
为了更好地贯彻黄河流域生态保护和高质量发展的国家重大战略,弥补分散立法的不足,实施流域综合管理,解决黄河流域面临的特殊生态问题,有必要制定黄河法作为黄河流域管理的基本法和综合法。本文利用数据分析法、实证分析法和文献研究法,以解决黄河流域面临的主要生态问题为目标和导向,依据有关政策文件、法律法规和改革成果,分析了黄河法需要建立健全的生态保护制度,包括全流域节水制度、水源涵养制度、水土保持制度和水污染综合治理制度、自然湿地生态修复制度等。  相似文献   

20.
Miller, W. Paul and Thomas C. Piechota, 2011. Trends in Western U.S. Snowpack and Related Upper Colorado River Basin Streamflow. Journal of the American Water Resources Association (JAWRA) 47(6):1197–1210. DOI: 10.1111/j.1752‐1688.2011.00565.x Abstract: Water resource managers in the Western United States (U.S.) are currently faced with the challenge of adapting to unprecedented drought and uncertain impacts of climate change. Recent research has indicated increasing regional temperature and changes to precipitation and streamflow characteristics throughout the Western U.S. As such, there is increased uncertainty in hydroclimatological forecasts, which impact reservoir operations and water availability throughout the Western U.S., particularly in the Colorado River Basin. Previous research by the authors hypothesized a change in the character of precipitation (i.e., the frequency and amount of rainfall and snowfall events) throughout the Colorado River Basin. In the current study, 398 snowpack telemetry stations were investigated for trends in cumulative precipitation, snow water equivalent, and precipitation events. Observations of snow water equivalent characteristics were compared to observations in streamflow characteristics. Results indicate that the timing of the last day of the snow season corresponds well to the volume of runoff observed over the traditional peak flow season (April through July); conversely, the timing of the first day of the snow season does not correspond well to the volume of runoff observed over the peak flow season. This is significant to water resource managers and river forecasters, as snowpack characteristics may be indicative of a productive or unproductive runoff season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号