首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The Science Advisory Board of the US Environmental Protection Agency has recommended that risk reduction strategies become the centerpiece of environmental protection. The goal in developing such strategies is to identify opportunities for greatest reduction of ecological risks. This is a perspective that is significantly more comprehensive than the traditional focus on human health risks arising from environmental degradation. The identification of ecological risks upon which environmental protection efforts should be focused requires an ecological risk assessment methodology that is based on anthropogenic stressors affecting an ecosystem and a set of impaired use criteria. A methodology based on this concept is developed and discussed in this article. The methodology requires that risk values be assigned to each ecosystem stressor-impaired use pair that reflect the degree to which the given stressor contributes to ecosystem risk as measured by the given impaired use criterion. Once these data are available, mathematical analyses based on concepts from fuzzy set theory are performed to obtain a ranking of ecosystem stressors. The methodology has been tested by applying it to a case study involving Green Bay of Lake Michigan. A workshop was held in which 11 persons with extensive knowledge of the Green Bay ecosystem determined risk values through a group-consensus process. The analytical portion of the methodology was then used to rank the ecosystem risks (stressors) from several perspectives, including prevention management and remediation management. The overall conclusion of the workshop participants was that the fuzzy set decision model is a useful and effective methodology for differentiating environmental risk.  相似文献   

2.
The development of a model for assessing the impact and interactions of stressors in the ecosystem of Lake Koronia, based on fuzzy inference, is presented in this paper. The proposed fuzzy inference model assesses the synergistic interactions among several significant stressors on fish production. These stressors include industrial pollution, pesticide and nutrient usage due to agricultural activities, and water level decrease due to irrigation works. Apart from the experts knowledge, expressed in a set of fuzzy rules, a number of parameters such as pH, conductivity, biochemical and chemical oxygen demand, and nitrate concentration were used as stressor indicators. The proposed model is capable of simulating the effect of a large variety of environmental conditions, and it can be used as a dynamic tool for ecosystem risk assessment since it produces both qualitative and quantitative results, allowing for comparisons of predictions with on-going observational research and ecosystem monitoring. Its operation was successfully verified for a number of different conditions, ranging from low stressor impact to high stressor impact (where, in fact, the fish production was diminished). Moreover, the proposed fuzzy inference model can be used as a tool for the investigation of the behavior of the aquatic ecosystem under a large number of hypothetical environmental risk scenarios.  相似文献   

3.
/ This paper presents a foundation for improving the risk assessmentprocess for freshwater wetlands. Integrating wetland science, i.e., use of anecosystem-based approach, is the key concept. Each biotic and abiotic wetlandcomponent should be identified and its contribution to ecosystem functionsand societal values determined when deciding whether a stressor poses anunreasonable risk to the sustainability of a particular wetland.Understanding the major external and internal factors that regulate theoperational conditions of wetlands is critical to risk characterization.Determining the linkages between these factors, and how they influence theway stressors affect wetlands, is the basis for an ecosystem approach.Adequate consideration of wetland ecology, hydrology, geomorphology, andsoils can greatly reduce the level of uncertainty associated with riskassessment and lead to more effective risk management. In order to formulateeffective solutions, wetland problems must be considered at watershed,landscape, and ecosystem scales. Application of an ecosystem approach can begreatly facilitated if wetland scientists and risk assessors work together todevelop a common understanding of the principles of both disciplines.KEY WORDS: Ecological risk assessment; Freshwater wetlands;Environmental pollution; Chemical stressors; Physical stressors; Biologicalstressors  相似文献   

4.
The Waquoit Bay Watershed ecological risk assessment was performed by an interdisciplinary and interagency workgroup. This paper focuses on the steps taken to formulate the analysis plan for this watershed assessment. The workgroup initially conducted a series of meetings with the general public and local and state managers to determine environmental management objectives for the watershed. The workgroup then decided that more information was needed on the impacts of six stressors: nutrient enrichment, physical alteration of habitat, altered freshwater flow, toxic chemicals, pathogens, and fisheries harvesting. Assessment endpoints were selected to establish the link between environmental management objectives, impacts of stressors, and scientifically measurable endpoints. The following assessment endpoints were selected: estuarine eelgrass cover, scallop abundance, finfish diversity and abundance, wetland bird distribution and abundance, piping plover distribution and abundance, tissue contaminant levels, and brook trout distribution and abundance in streams. A conceptual model was developed to show the pathways between human activities, stressors, and ecological effects. The workgroup analyzed comparative risks, by first ranking stressors in terms of their potential risk to biotic resources in the watershed. Then stressors were evaluated by considering the components of stressors (e.g., the stressor chemical pollution included both heavy metals and chlorinated solvents components) in terms of intensity and extensiveness. The workgroup identified nutrient enrichment as the major stressor. Nutrient enrichment comprised both phosphorus enrichment in freshwater ponds and nitrogen enrichment within estuaries. Because phosphorus impacts were being analyzed and mitigated by the Air Force Center for Environmental Excellence, this assessment focused on nitrogen. The process followed to identify the predominant stressor and focus the analyses on nitrogen impacts on eelgrass and scallops will serve as an example of how to increase the use of the findings of a watershed assessment in decision making.  相似文献   

5.
The regional-scale importance of an aquatic stressor depends both on its regional extent (i.e., how widespread it is) and on the severity of its effects in ecosystems where it is found. Sample surveys, such as those developed by the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP), are designed to estimate and compare the extents, throughout a large region, of elevated conditions for various aquatic stressors. In this article, we propose relative risk as a complementary measure of the severity of each stressor’s effect on a response variable that characterizes aquatic ecological condition. Specifically, relative risk measures the strength of association between stressor and response variables that can be classified as either “good” (i.e., reference) or “poor” (i.e., different from reference). We present formulae for estimating relative risk and its confidence interval, adapted for the unequal sample inclusion probabilities employed in EMAP surveys. For a recent EMAP survey of streams in five Mid-Atlantic states, we estimated the relative extents of eight stressors as well as their relative risks to aquatic macroinvertebrate assemblages, with assemblage condition measured by an index of biotic integrity (IBI). For example, a measure of excess sedimentation had a relative risk of 1.60 for macroinvertebrate IBI, with the meaning that poor IBI conditions were 1.6 times more likely to be found in streams having poor conditions of sedimentation than in streams having good sedimentation conditions. We show how stressor extent and relative risk estimates, viewed together, offer a compact and comprehensive assessment of the relative importances of multiple stressors.  相似文献   

6.
Ecological risk assessment provides a methodology for evaluating the threats to ecosystem function associated with environmental perturbations or stressors. This report documents the development of a conceptual model for assessing the ecological risk to the water quality function (WQF) of bottomland hardwood riparian ecosystems (BHRE) in the Tifton-Vidalia upland (TVU) ecoregion of Georgia. Previus research has demonstrated that mature BHRE are essential to maintaining water quality in this portion of the coastal plain. The WQF of these ecosystems is considered an assessment endpoit—an ecosystem function or set of functions that society chooses to value as evidenced by laws, regulations, or common usage. Stressors operate on ecosystems at risk through an exposure scenario to produce ecological effects that are linked to loss of the desired function or assessment end point. The WQF of BHRE is at risk because of the ecological and environmental quality effects of a suite of chemical, physical, and biological stressors. The stressors are related to nonpoint source pollution from adjacent land uses, especially agriculture; the conversion of BHRE to other land uses; and the encroachment of domestic animals into BHRE. Potential chemical, physical, and biological stressors to BHRE are identified, and the methodology for evaluating appropriate exposure scenarios is discussed. Field-scale and watershed-scale measurement end points of most use in assessing the effects of stressors on the WQF are identified and discussed. The product of this study is a conceptual model of how risks to the WQF of BHRE are produced and how the risk and associated uncertainties can be quantified.  相似文献   

7.
8.
/ In this paper we develop a conceptual framework for selectingstressor data and analyzing their relationship to geographic patterns ofspecies richness at large spatial scales. Aspects of climate and topography,which are not stressors per se, have been most strongly linked withgeographic patterns of species richness at large spatial scales (e.g.,continental to global scales). The adverse impact of stressors (e.g., habitatloss, pollution) on species has been demonstrated primarily on much smallerspatial scales. To date, there has been a lack of conceptual developmenton how to use stressor data to study geographic patterns of speciesrichness at large spatial scales.The framework we developed includes four components: (1) clarification of theterms stress and stressor and categorization of factors affecting speciesrichness into three groups-anthropogenic stressors, natural stressors, andnatural covariates; (2) synthesis of the existing hypotheses for explaininggeographic patterns of species richness to identify the scales over whichstressors and natural covariates influence species richness and to providesupporting evidence for these relationships through review of previousstudies; (3) identification of three criteria for selection of stressor andcovariate data sets: (a) inclusion of data sets from each of the threecategories identified in item 1, (b) inclusion of data sets representingdifferent aspects of each category, and (c) to the extent possible, analysisof data quality; and (4) identification of two approaches for examiningscale-dependent relationships among stressors, covariates, and patterns ofspecies richness-scaling-up and regression-tree analyses.Based on this framework, we propose 10 data sets as a minimum data base forexamining the effects of stressors and covariates on species richness atlarge spatial scales. These data sets include land cover, roads, wetlands(numbers and loss), exotic species, livestock grazing, surface water pH,pesticide application, climate (and weather), topography, and streams.KEY WORDS: Anthropogenic impacts; Biodiversity; Environmental gradients;Geographic information systems; Hierarchy  相似文献   

9.
Valuing goods and services from open oceans provides arguments for the ocean's protection and plays an increasingly important role in debates on the use and management of natural resources. This paper identifies and estimates the monetary value of some of the most important goods and services provided by open oceans. The list of goods and services considered includes food production, raw materials, water supply, CO2 regulation, bioremediation of waste, biomass and biodiversity conservation. Therefore, not only values associated with productive uses are quantified but also values assigned to other biological ecosystem services. This paper constitutes a first attempt in the open ocean literature at evaluating services such as water supply, biomass and biodiversity conservation. To obtain their monetary value, different techniques, some not applied before in this area, have been used depending on the ecosystem service to be evaluated. As a general criterion we use the concept of net value added (revenues obtained from the services less incurred costs). Our methodology is illustrated by estimating the monetary values of goods and services provided by the open ocean ecosystem of Spain as defined by its exclusive economic zone. The total economic value obtained measures the contribution of oceans to overall welfare and it may be an important instrument in managing open ocean ecosystems and developing environmental policies in the future.  相似文献   

10.
Ecological risk assessment (ERA) evaluates potential causal relationships between multiple sources and stressors and impacts on valued ecosystem components. ERAs applied at the watershed scale have many similarities to the place-based analyses that are undertaken to develop Total Maximum Daily Loads (TMDLs), in which linkages are established between stressors, sources, and water quality standards, including support of designated uses. TMDLs focus on achieving water quality standards associated with attainment of designated uses. In attempting to attain the water quality standard, many TMDLs focus on the stressor of concern rather than the ecological endpoint or indicators of the designated use that the standard is meant to protect. A watershed ecological risk assessment (WERA), at least in theory, examines effects of most likely stressors, as well as their probable sources in the watershed, to prioritize management options that will most likely result in meeting environmental goals or uses. Useful WERA principles that can be applied to TMDL development include: development and use of comprehensive conceptual models in the Problem Identification step of TMDLs; use of a transparent process for selecting Numeric Targets for TMDLs based on assessment endpoints derived from the management goal or designated use under consideration; analysis of co-occurring stressors likely to cause beneficial use impairment based on the conceptual model; use of explicit uncertainty analyses in the Linkage Analysis step of TMDL development; and frequent stakeholder interactions throughout the process. WERA principles are currently most applicable to those TMDLs in which there is no numeric standard and, therefore, indicators and targets need to be developed, such as many nutrient or sediment TMDLs. WERA methods can also be useful in determining TMDL targets in situations where simply targeting the water quality standard may re-attain the numeric criterion but not the broader designated use. Better incorporation of problem formulation principles from WERA into the TMDL development process would be helpful in improving the scientific rigor of TMDLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号