首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Soil loss and surface runoff patterns over a four-year period (1997–2000) were studied in erosion plots from three hillslopes under different vegetative covers (Rosmarinus officinalis, Triticum aestivum and natural-spontaneous vegetation) in Lanjaron (Alpujarras) on the south flank of the Sierra Nevada of southeast Spain. The erosion plots were located on the hillslopes at 35.5% incline, at 1,480 m in altitude and with 41.8 m2 (21 m×1.9 m) in area. The vegetative covers were tested for effectiveness in controlling the surface runoff and soil loss production. The highest runoff and erosion values, ranging from 114.1 to 1.7 mmyr–1 and from 14,564.3 to 6.6 kgha–1yr–1, respectively, over the entire study period, were measured under the Triticum aestivum. In the Rosmarinus officinalis, runoff ranged from 7.9 to 1.3 mmyr–1 and erosion from 156.4 to 2.3 kgha–1yr–1, while on the hillslope under natural-spontaneous vegetation, runoff ranged from 4.4 to 0.9 mmyr–1 and erosion from 322.3 to 2.2 kgha–1yr–1. According to the results the vegetative covers of Rosmarinus officinalis and natural-spontaneous vegetation reduced the soil losses by 99 and 98%, with respect to the Triticum aestivum, and the runoff losses by 94 and 96%, respectively. Also, the Rosmarinus officinalis and natural-spontaneous plants influenced infiltration by intercepting much of the rainfall water respect to the Triticum aestivum. Monitoring allowed more direct linkages to be made between management practices and their impacts on runoff and soil erosion, thereby enabling to identify problems and take appropriate preventive measures to improve the management practices.  相似文献   

2.
In the Mediterranean region the intensities and amounts of soil loss and runoff on sloping land are governed by rainfall pattern and vegetation cover. Over a two-year period (1998–1999), six wild species of aromatic and mellipherous plants (Thymus serpylloides subsp. Gadorensis, Thymus baeticus Boiss, Salvia lavandulifolia Vahl., Santolina rosmarinifolia L., Lavandula stoechas L. and Genista umbellata Poiret) were selected for erosion plots to determine their effectiveness in reducing water erosion on hillslopes of the Sierra Nevada Mountain (SE Spain). The erosion plots (including a bare-soil plot as control), located at 1,345 m in altitude, were 2 m2 (2 m × 1 m) in area and had 13% incline. The lowest runoff and soil erosion rates, ranging from 9 to 26 mm yr−1 and from 0.01 to 0.31 Mg ha−1 yr−1, respectively, over the entire study period, were measured under the Thymus serpylloides. Lavandula stoechas L. registered the highest rates among the plant covers tested, runoff ranging from 77 to 127 mm yr−1 and erosion from 1.67 to 3.50 Mg ha−1 yr−1. In the bare-soil plot, runoff ranged from 154 to 210 mm yr−1 and erosion from 4.45 to 7.82 Mg ha−1 yr−1. According to the results, the lowest-growing plant covers (Thymus serpylloides and Salvia lavandulifolia Vahl.) discouraged the soil erosion and runoff more effectively than did the taller and open medium-sized shrubs (Santolina rosmarinifolia L., Genista umbellata Poiret, Thymus baeticus Boiss and Lavandula stoechas L.). Monitoring allowed more direct linkage to be made between plant covers and the prevention of erosion, with implications for sustainable mountain agriculture and environmental protection.  相似文献   

3.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   

4.
The objective of this research was to evaluate the impacts of increasing product removal on biomass and nutrient content of a central hardwood forest ecosystem. Commercial thinning, currently the most common harvesting practice in southern New England, was compared with whole-tree clearcutting or maximum aboveground utilization. Using a paired-watershed approach, we studied three adjacent, first-order streams in Connecticut. During the winter of 1981–82, one was whole-tree clearcut, one was commercially thinned, and one was designated as the untreated reference. Before treatment, living and dead biomass and soil on the whole-tree clearcut site contained 578 Mg ha–1 organic matter, 5 Mg ha–1 nitrogen, 1 Mg ha–1 phosphorus, 5 Mg ha–1 potassium, 4 Mg ha–1 calcium, and 13 Mg ha–1 magnesium. An estimated 158 Mg ha–1 (27% of total organic matter) were removed during the whole-tree harvest. Calcium appeared to be the nutrient most susceptible to depletion with 13% of total site Ca removed in whole-tree clearcut products. In contrast, only 4% (16 Mg ha–1) of the total organic matter and 2% of the total nutrients were removed from the thinned site. Partial cuts appear to be a reliable management option, in general, for minimizing nutrient depletion and maximizing long-term productivity of central hardwood sites. Additional data are needed to evaluate the long-term impacts of more intensive harvests.  相似文献   

5.
Soil erosion from agricultural land use runoff is a major threat to the sustainability of soil composition and water resource integrity. Sugarcane is an important cash and food security crop in South Africa, subjected to an intensive soil erosion, and consequently, severe land degradation. This study aimed to investigate soil erosion and associated soil and cover factors under rainfed sugarcane, in a small catchment, KwaZulu‐Natal, South Africa. Three replicated runoff plots were installed at different slope positions (down, mid and upslope) within cultivated sugarcane fields to monitor soil erosion during the 2016–2017 rainy season. On average, annual runoff (RF) was significantly greater from 10 m2 plots with 1163.77 ± 2.63 l/m/year compared to 1 m2 plots. However, sediment concentration (SC) was significantly lower in 10 m2 (0.34 ± 0.04 g/l) compared to 1 m2 (6.94 ± 0.24 g/l) plots. The annual soil losses (SL) calculated from 12 rainfall events was 58.36 ± 0.77 and 8.84 ± 0.20 t/ha from 1 m2 and 10 m2 plots, respectively. The 1 m2 plot, SL (2.4 ± 1.41 ton/ha/year) in the upslope experienced 33% more loss than the midslope and 50% more loss than the downslope position. SL was relatively lower from the 10 m2 plots than the 1 m2 plots, which is explained by high sediment deposition at the greater plot scale. SL was negatively correlated with the soil organic carbon stocks (r = ?0.82) and soil surface cover (r = ?0.55). RF decreased with the increase of slope gradient (r = ?0.88) and soil infiltration rate (r = ?0.87). There were considerable soil losses from cultivated sugarcane fields with low organic matter. These findings suggest that to mitigate soil erosion, soil organic carbon stocks and vegetation cover needs to be increased through appropriate land management practices, particularly in cultivated areas with steep gradients.  相似文献   

6.
Biomass and productivity were compared in two plantations and in one stand of natural regeneration on similar sites in a premontane moist forest region of Puerto Rico. While initial growth rates of plantation species were higher, after four decades productivity of the natural regeneration plots was equal to or greater than productivity of the plantations. For the first 44 years, aboveground biomass of natural regeneration increased at an average annual rate of 3.8t·ha–1·yr–1, but the last year of the study it was 14.7t·ha–1. Biomass increment of a pine plantation averaged between 8 and 10.5t·ha–1·yr–1 except for one year when the rate was much lower, possibly because of hurricane damage. A tropical hardwood plantation averaged close to 4t·ha–1·yr–1 for 41 years. It is suggested that in countries where funds for land reclamation are limited, intensive plantations may not always be the best strategy. Natural regeneration or shelterbelt plantations may be suitable alternatives.  相似文献   

7.
Climate and land-use/cover changes (LUCC) influence soil erosion vulnerability in the semi-arid region of Alqueva, threatening the reservoir storage capacity and sustainability of the landscape. Considering the effect of these changes in the future, the purpose of this study was to investigate soil erosion scenarios using the Revised Universal Soil Loss Equation (RUSLE) model. A multi-agent system combining Markov cellular automata with multi-criteria evaluation was used to investigate LUCC scenarios according to delineated regional strategies. Forecasting scenarios indicated that the intensive agricultural area as well as the sparse and xerophytic vegetation and rainfall-runoff erosivity would increase, consequently causing the soil erosion to rise from 1.78 Mg ha?1 to 3.65 Mg ha?1 by 2100. A backcasting scenario was investigated by considering the application of soil conservation practices that would decrease the soil erosion considerably to an average of 2.27 Mg ha?1. A decision support system can assist stakeholders in defining restrictive practices and developing conservation plans, contributing to control the reservoir's siltation.  相似文献   

8.
The rice fields, depleted of O2, contain large amount of moisture and organic substrates to provide an ideal anaerobic environment for methanogenesis and are one of the principal anthropogenic sources of methane. In order to mitigate this emission Alternative Electron Acceptors (AEA) were altered in the soil. The experiments were carried out in four seasons at the site of Balarampur, near Baruipur, South 24 Parganas, West Bengal, namely September–December, 2005 (Cultivar: Sundari), February–May, 2006 (Cultivar: Sundari), September–December, 2006 and February–May, 2007 (Cultivar: Swarna-Pankaj). The seasonal average methane flux (Fe treated), for the cultivar type “Sundari” (season: September–December, 2005), is 4.41 t ha−1, as compared to the value of 6.40 t ha−1 for the untreated soil. Similarly for February–May, 2006, the seasonal average methane flux (Fe treated) is 5.52 t ha−1, whereas the untreated flux is 5.69 t ha−1. In the third and fourth seasons we had two treatments with Ammonium Thiosulphate and Ferric Hydroxide. The seasonal average methane flux (treatment: Ammonium Thiosulphate) is 4.35 t ha−1 and 5.41 t ha−1 respectively, whereas for the ferric hydroxide treated soil it is 4.35 t ha−1 and 6.14 t ha−1 respectively. The properties related to the nutrient quality of the harvested paddy seeds supplement these results.  相似文献   

9.
Use of anionic polyacrylamide (PAM) to control phosphorus (P) losses from a Chinese purple soil was studied in both a laboratory soil column experiment and a field plot experiment on a steep slope (27%). Treatments in the column study were a control, and PAM mixed uniformly into the soil at rates of 0.02, 0.05, 0.08, 0.10, and 0.20%. We found that PAM had an important inhibitory effect on vertical P transport in the soil columns, with the 0.20% PAM treatment having the greatest significant reduction in leachate soluble P concentrations and losses resulting from nine leaching periods. Field experiments were conducted on 5 m wide by 21 m long natural rainfall plots, that allowed collection of both surface runoff and subsurface drainage water. Wheat was planted and grown on all plots with typical fertilizer applied. Treatments included a control, dry PAM at 3.9 kg ha?1, dry PAM at 3.9 kg ha?1 applied together with lime (CaCO3 at 4.9 t ha?1), and dry PAM at 3.9 kg ha?1 applied together with gypsum (CaSO4·2H2O at 4 t ha?1). Results from the field plot experiment in which 5 rainfall events resulted in measurable runoff and leachate showed that all PAM treatments significantly reduced runoff volume and total P losses in surface runoff compared to the control. The PAM treatments also all significantly reduced water volume leached to the tile drain. However, total P losses in the leachate water were not significantly different due to the treatments, perhaps due to the low PAM soil surface application rate and/or high experimental variability. The PAM alone treatment resulted in the greatest wheat growth as indicated by the plant growth indexes of wheat plant height, leaf length, leaf width, grain number per head, and dried grain mass. Growth indexes of the PAM with Calcium treatments were significantly lesser. These results indicate that the selection and use of soil amendments need to be carefully determined based upon the most important management goal at a particular site (runoff/nutrient loss control, enhanced plant growth, or a combination).  相似文献   

10.
There is a need to evaluate the interference of pig slurry rate and the terrain slope in the chemical elements losses from the soil. This work aimed to quantify water and chemical element losses by surface runoff due to terrain slope and pig slurry rate (PS) in two soils with contrasting textures. Two trials were evaluated in 2018 and 2019 in Cambisol and Nitisol. Rates of 0, 22.5, 45, and 90 m3 ha−1 yr−1 of PS were applied superficially in sites with slopes ranging from 10% to 35%. Perennial forage grass Tifton 85 (Cynodon dactylon) was grown as summer crop and ryegrass (Lolium multiflorum) was sown in the cold seasons in a field environment. Were determined the runoff, the volume of water, and chemical elements (Al, Ca, P, Mg, Cd, Cr, Cu, Mn, Fe, Pb, and Zn) lost by the surface runoff after natural rainfall. Increasing land slope elevated water losses substantially, on average 23.4 times in Cambisol and 10.8 times in Nitisol. This increase resulted in average increases of 27.6 and 12.4 times in the losses of the chemical elements analyzed for Cambisol and Nitisol, respectively. There was a reduction in water losses by surface runoff due to increased PS rates applied in both sites. The increased PS rate affected the losses of Cr and Cu in Cambisol and P, Mg, Cd, and Cu in Nitisol. The clayey soil potentiated the water and chemical elements losses by surface runoff in relation to the soil with lower clay content. Regardless of the soil, water and chemical element losses are maximized at higher slopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号