首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: This paper analyzes the sensitivity of drawdown to four hydraulic parameters in unconfined aquifers: horizontal and vertical hydraulic conductivity Kr and Kz, storage coefficient S, and specific yield Sy. Sensitivity coefficients indicate that the sensitivity vanes with time for each aquifer parameter, and Kr, Kz, S, and Sy are identifiable from recovery test data. An inverse method was used to calculate the four parameters from residual drawdowns. Results of application examples demonstrate that residual data provide valid information in the determination of unconfined aquifer hydraulic parameters.  相似文献   

2.
ABSTRACT: The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezometers located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.  相似文献   

3.
ABSTRACT: This paper presents hydraulic conductivities of streambeds measured in three rivers in south‐central Nebraska: the Platte, Republican, and Little Blue Rivers. Unlike traditional permeameter tests in streams that determine only the vertical hydraulic conductivity (Kv), the extended permeameter methods used in this study can measure K in both vertical and horizontal as well as oblique directions. As a result, the anisotropy of channel sediments can be determined from streambed tests of similar sediment volumes. Sandy streambeds with occasional silt/clay layers exist in the Republican and Platte Rivers. The average Kv values range from about 15 to 47 m/day for the sandy streambed and about 1.6 m/day for the silt/clay layers. Statistical analyses indicated that the Kv values of sand and gravel in the Platte and Republican Rivers essentially have the same mean; but the Kv values from the Little Blue River have a statistically different mean. Kv is about four times smaller than the horizontal hydraulic conductivity (Kh) for the top 40 cm of sandy streambed. Measured Kh values of the sandy streambed are in the same magnitude as the Kh of the alluvial aquifer determined using pumping tests. The smaller Kv value in the whole aquifer is the result of interbedded layers of silt and clay within the sand and gravel sediments.  相似文献   

4.
ABSTRACT: A method is presented to analyze time-drawdown data from one or more observation wells for the calculation of four hydraulic parameters for unconfined aquifers: vertical hydraulic conductivity, horizontal hydraulic conductivity, storage coefficient, and specific yield. The hydraulic parameter results are further analyzed for reliability and the possible ranges of the actual parameter values. After verification using a theoretical example, the method was used to analyze pumping test data from 22 observation wells in an unconfined alluvial aquifer near Grand Island, Nebraska. Results indicate that this method can be used to efficiently calculate the four hydraulic parameters in this type of aquifer. The method can also identify the impact of measurement errors on the parameter estimates, and provide ranges of the actual parameter values. The parameter values calculated using this method were compared to those determined using other theories. It is found that this method is very useful for calculating the hydraulic properties from pumping test data and for analyzing the parameter reliability.  相似文献   

5.
The paper presents an approach for the interpretation of hydraulic tests of a CO2 storage reservoir. The sandstone reservoir is characterised by a fluviatile channel structure embedded in a low-permeability matrix. Pumping tests were carried out in three wells, with simultaneous pressure monitoring in each well.The hydraulic parameters (permeability and storativity) and the boundary configurations were calibrated using three different approaches: (i) parameter calibration and type curve interpretation for single-hole tests, (ii) calibration of the entire build-up phase for cross-hole tests, and (iii) calibration of the initial pressure response for cross-hole pumping tests. In addition, the arrival time of the pressure response was determined and provides additional information about the pathways of hydraulic connection.The measured pumping test permeabilities of the formation were much lower than those measured on the cores, which is very unusual. The pumping test permeabilities are mainly between 50 mD and 100 mD (millidarcy), while core samples show a mean aquifer permeability of 500–1100 mD. Based on this it was concluded that some kind of continuous low-permeability structure exists, which was supported by core material. Three possible aquifer configurations were considered. The first and second were derived from traditional pumping test analysis and were conceptualised using flow boundaries. Each of the analyses provides a different result. A method was developed in which these differences were resolved by interpreting the pressure response with respect to its spatial and temporal sensitivity. This solution lead to a third configuration which was mainly based on spatially-variable permeabilities. Taking into account the pumping test results, the geological background and the behaviour of injected CO2, we consider only the third configuration to be realistic. The results are in good agreement with modelled CO2 arrival times and pressure history.  相似文献   

6.
ABSTRACT: Interpretation of ground water level changes in a developed aquifer usually relies on reference to some benchmark such as “predevelopment” ground water levels, changes from fall to fall and/or spring to spring, or to determination of maximum stress during the pumping season. The assumption is that ground water levels measured in the monitoring well accurately reflect the state of the ground water resource in terms of quantity in storage and the effects of local pumping. This assumption is questionable based on the patterns shown in continuous hydrographs of water levels in monitoring wells in Nebraska, and wells installed to determine vertical gradients. These hydrographs show clear evidence for vertical ground water gradients and recharge from overlying parts of the aquifer system to deeper zones in which production wells are screened. The classical concept of semi‐perched ground water, as described by Meinzer, is demonstrated by these hydrographs. The presence of semi‐perched ground water (Meinzer definition, there is no intervening unsaturated zone) invalidates the use of measured ground water levels in regional observation programs for detailed numerical management of the resource. Failure to recognize the Meinzer effect has led to faulty management. The best use of data from the observation well network would be for detection of trends and education unless it is clearly understood what is being measured.  相似文献   

7.
Johnson, R.L., B.R. Clark, M.K. Landon, L.J. Kauffman, and S.M. Eberts, 2011. Modeling the Potential Impact of Seasonal and Inactive Multi‐Aquifer Wells on Contaminant Movement to Public Water‐Supply Wells. Journal of the American Water Resources Association (JAWRA) 47(3):588‐596. DOI: 10.1111/j.1752‐1688.2011.00526.x Abstract: Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi‐aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi‐aquifer well is more than a kilometer from the PWS well. The contribution from multi‐aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi‐aquifer well from an unconfined aquifer to a confined aquifer even when those multi‐aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi‐aquifer wells can increase the vulnerability of a confined‐aquifer PWS well.  相似文献   

8.
ABSTRACT: Considerable advancements have been made in the development of analytical solutions for predicting the effects of pumping wells on adjacent streams and rivers. However, these solutions have not been sufficiently evaluated against field data. The objective of this research is to evaluate the predictive performance of recently proposed analytical solutions for unsteady stream depletion using field data collected during a stream/aquifer analysis test at the Tamarack State Wildlife Area in eastern Colorado. Two primary stream/aquifer interactions exist at the Tamarack site: (1) between the South Platte River and the alluvial aquifer and (2) between a backwater stream and the alluvial aquifer. A pumping test is performed next to the backwater stream channel. Drawdown measured in observation wells is matched to predictions by recently proposed analytical solutions to derive estimates of aquifer and streambed parameters. These estimates are compared to documented aquifer properties and field measured streambed conductivity. The analytical solutions are capable of estimating reasonable values of both aquifer and streambed parameters with one solution capable of simultaneously estimating delayed aquifer yield and stream flow recharge. However, for long term water management, it is reasonable to use simplified analytical solutions not concerned with early‐time delayed yield effects. For this site, changes in the water level in the stream during the test and a varying water level profile at the beginning of the pumping test influence the application of the analytical solutions.  相似文献   

9.
ABSTRACT: Reliable and consistent estimation of the components of the hydraulic conductivity tensor provides information needed to make proper decisions regarding clean up and restoration of contaminated aquifers. In this study, the nonlinear least-squares estimation technique was applied to drawdown versus time data from three or more observation wells to determine a theoretical ellipse of equal drawdown. The angle of rotation of this ellipse with respect to the working coordinate axes was determined by a procedure based on contouring the drawdowns at a given time. This ellipse, in turn, was used to estimate the directions and magnitudes of the horizontal components of the hydraulic conductivity tensor. The technique is applicable to confined, as well as leaky, aquifers. Sources of error in this technique include nonhomogeneity of the aquifer and partial penetration of the pumping and observation wells into the aquifer. The procedure presented may be used as an additional tool to verify computations of hydraulic conductivity anisotropy based on other techniques.  相似文献   

10.
ABSTRACT: High-capacity wells are used as a convenient and economical means of sampling groundwater quality. Although the inherent limitations of using these wells are generally recognized, little has been done to investigate how these wells actually sample groundwater. A semi-analytical particle tracking model is used to illustrate the influence of variable vertical contaminant distributions and aquifer heterogeneity on the composition of water samples from these wells during short pumping periods. The hypothetical pumping well used in the simulations is located in an unconfined, alluvial aquifer with a shallow water table and concentration gradients of nitrate-nitrogen contamination. This is a typical setting for many irrigated areas in the United States. The main conclusions are: (1) high-capacity wells underestimate the average amount of contamination within an aquifer; (2) shapes of concentration-time curves for high-capacity wells appear to be governed by the distribution of the contaminant and travel times to the well; (3) variables such as well construction, pumping rate, and hydrogeologic properties contribute to the magnitude of the concentration-time curves at individual high-capacity wells; and (4) a sampling strategy using concentration-time curves based on the behavioral characteristics of the well rather than individual samples will provide a much better framework for interpreting spatial contaminant distributions.  相似文献   

11.
ABSTRACT: The Edwards Aquifer is one of the most studied and most prolific aquifers in the United States. The aquifer is a heavily fractured and faulted carbonate aquifer with transmissivities in excess of 100 ft2/s. The City of San Antonio relies upon the Edwards Aquifer as its sole source for water. Much work has been done on quantifying recharge to the aquifer and discharge from wells and acquiring aquifer characteristics from pumping tests, specific capacity tests, and geophysical logs. Although the aquifer has been well studied in Bexar County, much less is known about the Edwards Aquifer in Kinney County. This is partly due to the lower population within the county (approximately 3,500 people) relative to the eastern counties (Uvalde, Medina, Bexar, Comal, and Hays) and the great distance of Kinney County from high profile discharge areas such as the City of San Antonio and Comal and San Marcos Springs. Three key products resulted from this study: (1) exploratory well drilling and the largest aquifer test in the county that were conducted to evaluate the well yields within a 10,000 acre study area in which a drawdown of 2.5 ft approximately 1.2 miles away was observed while pumping at approximately 4,600 gpm; (2) a recharge estimate for the Edwards Aquifer within Kinney County of approximately 71,382 ac‐ft/yr; and (3) locating the Brackettville Groundwater Divide from an evaluation of ground water flow direction and hydrograph analysis. These results help evaluate the complex hydraulics occurring within Kinney County and aid in development of ground water modeling that will be used in managing the Edwards Aquifer.  相似文献   

12.
ABSTRACT This paper deals with the application of a two-dimensional, saltwater intrusion model to the aquifer in Northern Guam. The model used finite element theory and the Galerkin, weighted-residual technique as its basis. The Northern Guam lens was discretized into 299 linear, triangular elements and 189 nodes. The model was calibrated using 1978 hydrologic data. The output of the model was compared with measured water levels in six observation wells. The calibrated values of permeability and porosity were then used to verify the model using 1979 data. A calibrated and verified model can be used to make an infinite variety of management and planning studies. In this study, three applications are provided that would be considered typical management runs. Steady state runs were made to compare the four conditions of no pumping, 1978 pumping levels, twice 1978 pumping levels, and five times 1978 pumping levels. The water levels due to these conditions are shown in plan and in cross sections of the aquifer. The effect of zero recharge to the aquifer is next demonstrated for the pumping levels existing during 1978. The final run shows how long the aquifer takes to reach steady state when the pumping rate is increased from the 1978 pumping level to twice that value. The program can be used for numerous other studies for management and planning purposes.  相似文献   

13.
The natural complexity, heterogeneity, and extent of transboundary aquifers around the world, have led to controversy over which method or criteria should be used to identify and delineate their boundaries. Currently, there is no standard methodology that aquifer‐sharing countries can use to delineate the area of a transboundary aquifer. In the case of Mexico and Texas, Mexico uses administrative boundaries, whereas Texas uses geological boundaries. This paper proposes a method for delineation and prioritization of aquifers (or aquifer areas) called effective transboundary aquifer areas (ETAAs), which uses a combination of physical criteria (geological boundaries, topography, and hydrography) and the location and density of active water wells in the borderland between Mexico and Texas. This method identifies the area of priority (productivity area) in the aquifer using pumping patterns or hot spots regardless of the aquifer’s surficial geological limits, therefore offering a more effective, local and practical management option at the transboundary level. Different geological features or pumping patterns will have different sizes and locations of ETAAs within the same aquifer. In West Texas, which is dominated by bolsons, the method produces limited options for ETAAs, whereas in South Texas in the easternmost border the identified ETAAs are more significant.  相似文献   

14.
Two wellfields have been developed to provide water for a coal fired electric generating station in Arizona. Wellfield No. 1 penetrates the unconfined Coconino Sandstone aquifer, and wellfield No. 2 penetrates the composite Kaibab Limestone-Coconino Sandstone aquifer where ground water occurs under confined conditions. A well in each wellfield was pumped and water level drawdown data were collected before and after acidizing. The drawdown data at the various pumping rates were analyzed to determine the potential benefits of acidizing production water wells in both wellfields. After acidizing, the specific capacity of the well in wellfield No. 1 was improved about 50 percent at water production rates ranging from about 200 to 500 gallons per minute (gpm) (13 to 32 liters per second (lps)). After acidizing, the specific capacity of the well completed in wellfield No. 2 was improved about 100 percent at pumping rates ranging from about 1,250 to 2,200 gpm (79 to 139 lps). An annual saving of approximately 11 percent in pumping costs can be realized in wellfield No. 2, and savings are approximately four percent in wellfield No. 1. Acidization is beneficial for wells that can produce more than 500 gpm (32 lps), and is of marginal value for those that produce less than that amount.  相似文献   

15.
ABSTRACT: Using a genetic algorithm (GA), optimal intermittent pumping schedules were established to simulate pump‐and‐treat remediation of a contaminated aquifer with known hydraulic limitations and a water miscible contaminant, located within the Duke Forest in Durham, North Carolina. The objectives of the optimization model were to minimize total costs, minimize health risks, and maximize the amount of contaminant removed from the aquifer. Stochastic ground water and contaminant transport models were required to provide estimates of contaminant concentrations at pumping wells. Optimization model simulations defined a tradeoff curve between the pumping cost and the amount of contaminant extracted from the aquifer. For this specific aquifer/miscible contaminant combination, the model simulations indicated that pump‐and‐treat remediation using intermittent pumping schedules for each pumping well produced significant reductions in predicted contaminant concentrations and associated health risks at a reasonable cost, after a remediation time of two years.  相似文献   

16.
ABSTRACT: Numerical models were used to examine the limitations of the assumptions used in an analytical induced infiltration model. The assumptions tested included negligible streambed effects, negligible areal recharge, two-dimensional ground water flow, fully penetrating rivers and wells, and constant surface water stage. For situations that deviate from the underlying assumptions, the analytical model becomes a less reliable predictor of induced infiltration. The numerical experiments show that streambed effects cannot be neglected if the streambed conductivity is more than one order of magnitude lower than the aquifer hydraulic conductivity. Areal recharge cannot be neglected if the ground water basin receives more than 5 in/yr of areal recharge. Three-dimensional flow effects due to well partial penetration cannot be neglected if the ratio of horizontal hydraulic conductivity to vertical hydraulic conductivity (Kh/Ku) is greater than 10. Surface water elevation fluctuations can significantly influence the induced infiltration rate, depending on the degree of fluctuations and the ground water hydraulic gradient.  相似文献   

17.
ABSTRACT: Closely located domestic and public supply wells were sampled using identical sampling procedures to allow comparison of water quality associated with well type. Water samples from 15 pairs of wells with similar screened intervals completed in the central High Plains regional aquifer in parts of Kansas, Oklahoma, and Texas were analyzed for more than 200 water quality constituents. No statistically significant differences were observed between the concentrations of naturally‐derived constituents (major ions, trace elements, and radon) in paired wells. However, differences in water quality between paired wells were observed for selected anthropogenic compounds (pesticides and tritium), in that some public supply wells produced water that was more recently recharged and contained constituents derived from surface activities. The presence of recently recharged water and compounds indicative of anthropogenic activities in some public supply wells was likely due to operational variations (pumping rate and pumping cycles), as demonstrated in a particle tracking simulation. Water containing surface‐derived anthropogenic compounds from near the water table was more quickly drawn to high volume public supply wells (less than five years) than domestic wells (greater than 120 years) with small pumping rates. These findings indicate that water quality samples collected from different well types in the same area are not necessarily directly comparable. Sampling domestic wells provides the best broad‐scale assessment of water quality in this aquifer setting because they are less susceptible to localized contamination from near the water table. However, sampling public supply wells better represents the quality of the used resource because of the population served.  相似文献   

18.
ABSTRACT: A Geographic Information System (GIS) was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. As mandated by state law, water-use data are reported by ground-water withdrawers annually to the Arkansas Soil and Water Conservation Commission, and stored in the Arkansas Site-Specific Water-Use Data System provided and supported by the U.S. Geological Survey. Although most withdrawers are able to provide the amount of water withdrawn and the depth of their wells, very few are able to provide the name of the aquifer from which they withdraw water. GIS software was used to develop an automated procedure for identifying the primary aquifers supplying ground water to individual wells in eastern Arkansas. The software was used to generate a spatial representation of the bottom boundary for the Mississippi River Valley alluvial aquifer (the shallowest aquifer) in eastern Arkansas from well log-data collected by the U.S. Geological Survey. The software was then used to determine the depth of the aquifer bottom at reported well locations to ascertain whether the Mississippi River Valley alluvial aquifer or a deeper aquifer was the primary aquifer providing water to each well. The alluvial aquifer was identified as the primary aquifer for about 23,500 wells.  相似文献   

19.
The estimates for geological CO2 storage capacity worldwide vary, but it is generally believed that the capacity in saline aquifers will be sufficient for the amounts of CO2 that will need to be stored. The effort required to select and qualify a geological storage site for safe storage will, however, be significant and storage capacity may be a limited resource regionally. Both from a economic and resource management perspective it is therefore important that potential storage sites are exploited to their full potential.In static capacity estimates, where the maximum stored amount of CO2 is given as a fraction of the formation pore volume, typically arrive at efficiency factors in the range of a few per cents. Recent work has shown that when the dynamic behaviour of the injected CO2 is taken into account, the efficiency factor will be reduced because of the increase in pore pressure in the region around the injection well(s). The increase in pore pressure will propagate much further than the CO2. The EU directive on geological CO2 storage specifically addresses the restriction that will apply when different storage sites are interacting due to pressure communication. Consequently, the pore pressure increase at the boundary of the storage license area will be an important limiting factor for the amount of CO2 that can be injected.One obvious method to control the pore pressure is to produce water from the aquifer at some distance from the CO2 injection wells. This paper discusses results from simulations of CO2 injection in two aquifers on the Norwegian Continental Shelf; the Johansen aquifer and the southern part of the Utsira aquifer. These aquifers are candidates for injection of CO2 shipped out via pipeline from the Norwegian West Coast. The injected amounts of CO2 over a period of 50 years are 0.518 Gtonne for the Johansen aquifer and 1.04 Gtonne for the Utsira aquifer.Several design options for the injection operations are investigated: Injection of CO2 without water production; injection into several wells to distribute the injected fluids and reduce the local pressure increase around each injection well; and injection with simultaneous production of water from one or more wells. The boundaries of the aquifer formations are assumed closed in all simulations. The possible consequences of other types of boundary conditions (semi-closed or open) are briefly discussed.  相似文献   

20.
ABSTRACT: A numerical method is presented for the analysis of a pumped well in a homogeneous aquifer with allowance made for the decrease in saturated depth, vertical components of flow, the possibility of regions of the aquifer changing between the confined and unconfined states and the effect of different outer boundaries. The method is based on a discrete space, backward difference time, approximation. A particular example considered in detail concerns heavy pumping from one of a regular array of wells in an unconfined aquifer until the drawdown in the well reaches a critical value. Non-dimensional curves are presented relating the time and volume dewatered to the quantity discharged from the well. A further example investigates the effect of an initial confining pressure on the aquifer behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号