首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The San Rossore Natural Park, located on the Tuscany (Italy) coast, has been utilized over the last 10 years for many remote sensing campaigns devoted to coastal zone monitoring. A wet area is located in the south-west part of the Natural Park and it is characterized by a system of ponds and dunes formed by sediment deposition occurring at the Arno River estuary. The considerable amount of collected data has permitted us to investigate the evolution of wetland spreading and land coverage as well as to retrieve relevant biogeochemical parameters, e.g. green biomass, from remote sensing images and products. This analysis has proved that the monitoring of coastal wetlands, characterized by shallow waters, moor and dunes, demands dedicated aerospace sensors with high spatial and spectral resolution. The outcomes of the processing of images gathered during several remote sensing campaigns by airborne and spaceborne hyperspectral sensors are presented and discussed. A particular effort has been devoted to sensor response calibration and data validation due to the complex heterogeneity of the observed natural surfaces.  相似文献   

2.
Effective management of tidal wetlands requires periodic data on the boundaries, extent, and condition of the wetlands. In many states, wetlands are defined wholly, or in combination with other criteria, by the presence of particular emergent halophytic plants. Many important characteristics of the wetlands ecosystem are related directly to the production of emergent plant material or may be inferred from knowledge of the distribution of emergent plant species. Remote-sensing techniques have been applied to mapping of the distribution of wetland vegetation but not to quantitative evaluation of the condition of that vegetation.Recent research in the tidal wetlands of Delaware and elsewhere has shown that spectral canopy reflectance properties can be quantitatively related to the emergent green biomass ofSpartina alterniflora (salt marsh cord grass) throughout the peak growing season (April through September, in Delaware). Periodic measurements of this parameter could be applied to calculations of net aerial primary productivity for large areas ofS. alterniflora marsh in which conventional harvest techniques may be prohibitively time consuming. The method is species specific and, therefore, requires accurate discrimination ofS. alterniflora from other vegetation types. Observed seasonal changes in species spectral signatures are shown to have potential for improving multispectral categorization of tidal wetland vegetation types.  相似文献   

3.
A national approach to the conservation of biodiversity in Australia's freshwater ecosystems is a high priority. This requires a consistent and comprehensive system for the classification, inventory, and assessment of wetland ecosystems. This paper, using the State of Victoria as a case study, compares two classification systems that are commonly utilized to delineate and map wetlands--one based on hydrology (Victorian Wetland Database [VWD]) and one based on indigenous vegetation types and other natural features (Ecological Vegetation Classes [EVC]). We evaluated the extent of EVC mapping of wetlands relative to the VWD classification system using a number of datasets within a geographical information system. There were significant differences in the coverage of extant EVCs across bioregions, different-sized wetlands, and VWD wetland types. Resultant depletion levels were markedly different when examined using the two systems, with depletion levels, and therefore perceived conservation status, of EVCs being significantly higher. Although there is little doubt that many wetland ecosystems in Victoria are in fact threatened, the extent of this threat cannot accurately be determined by relying on the EVC mapping as it currently stands. The study highlighted the significant impact wetland classification methods have in determining the conservation status of freshwater ecosystems.  相似文献   

4.
Coastal freshwater wetlands are threatened by increased salinity due to relative sea level rise and reduced freshwater inputs. Remote radiometric measurement of freshwater marsh canopies to detect small shifts in water column salinity would be useful for assessing salinity encroachment. We measured leaf hyperspectral (300-1100 nm) reflectance of freshwater macrophytes (cattail, Typha latifolia and sea oxeye, Borrichia frutescens) in a field study in a subtropical brackish (2.5-4.5 parts per thousand salinity, per thousand) marsh to determine salinity effects on visible and near-infrared spectral band reflectance and to identify reflectance indices sensitive to small (1 per thousand) changes in wetland salinity. For sea oxeye, floating-position water band index [fWBI = R(900)/minimum(R(930) - R(980)), where R(lambda) = reflectance at band lambda], normalized difference vegetation index [NDVI = (R(774) - R(681))/(R(774) + R(681))], and a proposed wetland salinity reflectance ratio (WSRR = R(990)/R(933)) were sensitive to salinity with R2 of 40, 35, and 65%, respectively (p < 0.01). For cattail, NDVI and photochemical reflectance index [PRI = (R(531) - R(570))/(R(570) + R(531))] were sensitive to salinity with R2 of 29 and 33%, respectively (p 相似文献   

5.
To test the effectiveness of the 404 permit program in preventing a net loss of wetland resources, 75 Section 404 projects permitted in the years 1987–1989 and located in a portion of southern California were evaluated. From this group of projects, 80.47 ha of wetlands were affected by Section 404 permits and the Army Corps of Engineers required 111.62 ha of wetland mitigation. To verify the successful completion of each mitigation project, all 75 project sites were visited and evaluated based on the amount of dead vegetation, growth and coverage, and the number of invasive species. Based on the field verification results, the actual amount of completed mitigation area was 77.33 ha, resulting in a net loss of 3.14 ha of wetland resources in the years 1987–1989. By comparing the types of wetlands lost to the types of wetlands mitigated, it is apparent that, in particular, freshwater wetlands are experiencing a disproportionately greater loss of area and that riparian woodland wetlands are most often used in mitigation efforts. The net result of these accumulated actions is an overall substitution of wetland types throughout the region. Results also indicate that, typically, large-scale mitigation projects are more successful compared to smaller projects and that successful compliance efforts are not evenly distributed throughout the region. We recommend that better monitoring, mitigation in-kind, mitigation banking, and planning on a regional or watershed scale could greatly improve the effectiveness of the Section 404 permitting program.  相似文献   

6.
ABSTRACT: The delineation of inland wetlands requires close field examination of the biological and physical gradients (transition zones) between wetlands and bordering uplands. As part of a study on the detection and delineation of inland wetlands in eastern Connecticut by remote sensing techniques, this effort was designed to investigate vegetation distribution and composition and selected physical and chemical properties of the soils of wetland to upland transition zones in deciduous wetland forests. Field research was conducted during the growing season of 1975 within a test area consisting of the 45 mi2 Town of Mansfield, Connecticut. Changes in vegetation composition and structure, soil pH, and soil water content were determined along line transects extended over wetland to upland transition zones. Differences in soil pH occurred along the transects but were of such magnitude that they probably have little impact on plant distribution. There were significant changes in soil water content along the wetland to upland gradients. Discriminant analysis applied to statistical “index of abundance” data describing vegetation distribution among the various zones (wetland, transition, upland) showed which plant species best distinguish wetlands from uplands. Of the criteria studied, vegetation composition and distribution, soil water content, and relief are the most useful criteria for delineating deciduous wetland forests.  相似文献   

7.
Wang X  Yu J  Zhou D  Dong H  Li Y  Lin Q  Guan B  Wang Y 《Environmental management》2012,49(2):325-333
In this study, we compared ecological characteristics of wetland vegetation in a series of restoration projects that were carried out in the wetlands of Yellow River Delta. The investigated characteristics include plant composition structure, species diversity and community similarity in three kinds of Phragmites australis wetlands, i.e. restored P. australis wetlands (R1, R2, R3 and R4: restored in 2002, 2005, 2007 and 2009, respectively), natural P. australis wetland (N) and degraded P. australis wetland (D) to assess the process of wetlands restoration. The coverage of the R1 was 99%, which was similar to natural wetland. Among all studied wetlands, the highest and lowest stem density was observed in R1 and R2, respectively, Plant height and stem diameter show the same trend as N > R2 > R1 > R3 > D > R4. Species diversity of restored P. australis wetlands became closed to natural wetland. Both species richness and Shannon–Wiener index had similar tendency: increased first and then decreased with restored time. The highest species richness and species diversity were observed in R2, while the lowest values of those parameters were found in natural P. australis wetland. Similarity indexes between restored wetlands and natural wetland increased with the restoration time, but they were still less than 50%. The results indicate that the vegetation of P. australis wetlands has experienced a great improvement after several years’ restoration, and it is feasible to restored degraded P. australis wetlands by pouring fresh water into those wetlands in the Yellow River Delta. However, it is notable that costal degraded P. australis wetland in this region may take years to decades to reach the status of natural wetland.  相似文献   

8.
The European Habitats Directive 92/43/EEC has defined the need for the conservation of habitats and species with the adoption of appropriate measures. Within the Natura 2000 ecological network of special areas of conservation, natural habitats will be monitored to ensure the maintenance or restoration of their composition, structure and extent. The European Space Agency's GlobWetland project has provided remotely sensed products for several Ramsar wetlands worldwide, such as detailed land cover-land use, water cycle and inundated vegetation maps. This paper presents the development and testing of an operational methodology for updating a wetland's habitat map using the GlobWetland products, and the evaluation of the extent to which GlobWetland products have contributed to the habitat map updating. The developed methodology incorporated both automated and analyst-supervised techniques to photo-interpret, delineate, refine, and evaluate the updated habitat polygons. The developed methodology was proven successful in its application to the wetland complex of the Axios-Loudias-Aliakmon delta (Greece). The resulting habitat map met the European and Greek national requirements. Results revealed that GlobWetland products were a valuable contribution, but source data (enhanced satellite images) were necessary to discriminate spectrally similar habitats. Finally, the developed methodology can be modified for original habitat mapping.  相似文献   

9.
The extent of wetland in New Zealand has decreased by approximately 90% since European settlement began in 1840. Remaining wetlands continue to be threatened by drainage, weeds, and pest invasion. This article presents a rapid method for broad-scale mapping and prioritising palustrine and estuarine wetlands for conservation. Classes of wetland (lacustrine, estuarine, riverine, marine, and palustrine) were mapped using Landsat ETM+ imagery and centre-points of palustrine and estuarine sites as ancillary data. The results shown are for the Manawatu–Wanganui region, which was found to have 3060 ha of palustrine and 250 ha of estuarine wetlands. To set conservation priorities, landscape indicators were computed from a land-cover map and a digital terrain model. Four global indicators were used (representativeness, area, surrounding naturalness, and connectivity), and each was assigned a value to score wetland sites in the region. The final score is an additive function that weights the relative importance of each indicator (i.e., multicriteria decision analysis). The whole process of mapping and ranking wetlands in the Manawatu–Wanganui region took only 6 weeks. The rapid methodology means that consistent wetland inventories and ranking can now actually be produced at reasonable cost, and conservation resources may therefore be better targeted. With complete inventories and priority lists of wetlands, managers will be able to plan for conservation without having to wait for the collection of detailed biologic information, which may now also be prioritised.  相似文献   

10.
Given the unique biogeochemical, physical, and hydrologic services provided by floodplain wetlands, proper management of river systems should include an understanding of how floodplain modifications influence wetland ecosystems. The construction of levees can reduce river–floodplain connectivity, yet it is unclear how levees affect wetlands within floodplains, let alone the cumulative impacts within an entire watershed. This paper explores spatial relationships between levee and floodplain wetland systems in the Wabash Basin, United States. We used a hydrogeomorphic floodplain delineation technique to map floodplain extents and identify wetlands that may be hydrologically connected to river networks. We then spatially examined the relationship between levee presence, wetland area, and other river network attributes within discrete subbasins. Our results show that cumulative wetland area is relatively constant in subbasins that contain levees, regardless of maximum stream order within the subbasin. In subbasins that do not contain levees, cumulative wetland area increases with maximum stream order. However, we found that wetland distributions around levees can be complex, and further studies on the influence of levees on wetland habitat may need to consider finer resolution spatial scales.  相似文献   

11.
We evaluate two 10-year-old mitigation bank wetlands in central Ohio, one created and one with restored and enhanced components, by analysis of vegetation characteristics and by comparison of the year-10 vegetation and macroinvertebrate communities with reference wetlands. To assess different measures of wetland development, we compare the prevalence of native hydrophytes with an index of floristic quality and we evaluate the predictability of these parameters in year 10, given 5 years of data. Results show that the mitigation wetlands in this study meet vegetation performance criteria of native hydrophyte establishment by year 5 and maintain these characteristics through year 10. Species richness and floristic quality, as well as vegetative similarity with reference wetlands, differ among mitigation wetlands in year 1 and also in their rate of change during the first 10 years. The prevalence of native hydrophytes is reasonably predictable by year 10, but 5 years of monitoring is not sufficient to predict future trends of floristic quality in either the created or restored wetland. By year 10, macroinvertebrate taxa richness does not statistically differ among these wetlands, but mitigation wetlands differ from reference sites by tolerance index and by trophic guild dominance. The created wetland herbivore biomass is significantly smaller than its reference, whereas detritivore biomass is significantly greater in the created wetland and smaller in the restored wetland as compared with respective reference wetlands. These analyses illustrate differences in measures of wetland performance and contrast the monitoring duration necessary for legal compliance with the duration required for development of more complex indicators of ecosystem integrity.  相似文献   

12.
Streams represent an essential component of functional ecosystems and serve as sensitive indicators of disturbance. Accurate mapping and monitoring of these features is therefore critical, and this study explored the potential to characterize aquatic habitat with remotely sensed data. High spatial resolution, hyperspectral imagery of the Lamar River, Wyoming, USA, was used to examine the relationship between spectrally defined classes and field-mapped habitats. Advantages of this approach included enhanced depiction of fine-scale heterogeneity and improved portrayal of gradational zones between adjacent features. Certain habitat types delineated in the field were strongly associated with specific image classes, but most included areas of diverse spectral character; spatially buffering the field map polygons strengthened this association. Canonical discriminant analysis (CDA) indicated that the ratio of the variability among groups to that within a group was an order of magnitude greater for spectrally defined image classes (20.84) than for field-mapped habitat types (1.82), suggesting that unsupervised image classification might more effectively categorize the fluvial environment. CDA results also suggested that shortwave-infrared wavelengths were valuable for distinguishing various in-stream habitats. Although hyperspectral stream classification seemed capable of identifying more features than previously recognized, the technique also suggested that the intrinsic complexity of the Lamar River would preclude its subdivision into a discrete number of classes. Establishing physically based linkages between observed spectral patterns and ecologically relevant channel characteristics will require additional research, but hyperspectral stream classification could provide novel insight into fluvial systems while emerging as a potentially powerful tool for resource management.  相似文献   

13.
Twenty-three Section 404 permits in central Pennsylvania (covering a wetland age range of 1–14 years) were examined to determine the type of mitigation wetland permitted, how the sites were built, and what success criteria were used for evaluation. Most permits allowed for mitigation out-of-kind, either vegetatively or through hydrogeomorphic class. The mitigation process has resulted in a shift from impacted wetlands dominated by woody species to less vegetated mitigation wetlands, a trend that appears to be occurring nationwide. An estimate of the percent cover of emergent vegetation was the only success criterion specified in the majority of permits. About 60% of the mitigation wetlands were judged as meeting their originally defined success criteria, some after more than 10 years. The permit process appears to have resulted in a net gain of almost 0.05 ha of wetlands per mitigation project. However, due to the replacement of emergent, scrub–shrub, and forested wetlands with open water ponds or uplands, mitigation practices probably led to a net loss of vegetated wetlands.  相似文献   

14.
Many of todays agricultural landscapes once held vast amounts of wetland habitat for waterbirds and other wildlife. Successful restoration of these landscapes relies on access to accurate maps of the wetlands that remain. We used C-band (5.6-cm-wavelength), HH-polarized radar remote sensing (RADARSAT) at a 38° incidence angle (8-m resolution) to map the distribution of winter shorebird (Charadriiformes) habitat on agricultural lands in the Willamette Valley of western Oregon. We acquired imagery on three dates (10 December 1999, 27 January 2000, and 15 March 2000) and simultaneously collected ground reference data to classify radar signatures and evaluate map accuracy of four habitat classes: (1) wet with 50% vegetation (considered optimal shorebird habitat), (2) wet with > 50% vegetation, (3) dry with 50% vegetation, and (4) dry with > 50% vegetation. Overall accuracy varied from 45 to 60% among the three images, but the accuracy of focal class 1 was greater, ranging from 72 to 80%. Class 4 coverage was stable and dominated maps (40% of mapped study area) for all three dates, while coverage of class 3 decreased slightly throughout the study period. Among wet classes, class 1 was most abundant (about 30% coverage) in December and January, decreasing in March to approximately 15%. Conversely, class 2 increased dramatically from January to March, likely due to transition from class 1 as vegetation grew. This approach was successful in detecting optimal habitat for shorebirds on agricultural lands. For modest classification schemes, radar remote sensing is a valuable option for wetland mapping in areas where cloud cover is persistent. Also, Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331, USA  相似文献   

15.
Over one hundred wetland specialists and Earth Observation experts from around the world gathered at the European Space Agency's 'GlobWetland Symposium: Looking at wetlands from space' in Frascati, Italy, from 19 to 20 October, 2006. The aim of the Symposium was to stimulate discussion between the two communities by reviewing the latest developments in Earth Observation (EO) for the inventory, assessment and monitoring of wetlands and identify key scientific, technical and policy-relevant challenges for the future. The results provide an overview of the key areas of current research in the use of EO for mapping and managing wetlands, while also pointing out gaps that could hinder global inventory, assessment and monitoring of wetlands. This paper provides a summary of the main outputs with a focus on the role of EO technologies in supporting the implementation of the Ramsar Convention on Wetlands. The summary contains a qualitative analysis of the state of the art and considers possible directions and priorities for future research, development and application of EO-based technologies in wetland management. In this context we: 1) highlight those applications where EO technologies are ready for wider uptake by wetland managers, and provide suggestions for supporting such uptake; 2) indicate where EO technologies and applications currently in the research and development stages could potentially be useful in wetland management; and 3) provide recommendations for new research and development of EO technologies, that can be utilized to address aspects of wetland management not covered by the range of current EO applications.  相似文献   

16.
Many of todays agricultural landscapes once held vast amounts of wetland habitat for waterbirds and other wildlife. Successful restoration of these landscapes relies on access to accurate maps of the wetlands that remain. We used C-band (5.6-cm-wavelength), HH-polarized radar remote sensing (RADARSAT) at a 38° incidence angle (8-m resolution) to map the distribution of winter shorebird (Charadriiformes) habitat on agricultural lands in the Willamette Valley of western Oregon. We acquired imagery on three dates (10 December 1999, 27 January 2000, and 15 March 2000) and simultaneously collected ground reference data to classify radar signatures and evaluate map accuracy of four habitat classes: (1) wet with 50% vegetation (considered optimal shorebird habitat), (2) wet with > 50% vegetation, (3) dry with 50% vegetation, and (4) dry with > 50% vegetation. Overall accuracy varied from 45 to 60% among the three images, but the accuracy of focal class 1 was greater, ranging from 72 to 80%. Class 4 coverage was stable and dominated maps (40% of mapped study area) for all three dates, while class 3 coverage decreased slightly throughout the study period. Among wet classes, class 1 was most abundant (30% coverage) in December and January, decreasing in March by 15%. Conversely, class 2 increased dramatically from January to March, likely due to transition from class 1 as vegetation grew. This approach was successful in detecting optimal habitat for shorebirds on agricultural lands. For modest classification schemes, radar remote sensing is a valuable option for wetland mapping in areas where cloud cover is persistent. Also, Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331, USA  相似文献   

17.
Brown, Jeffrey S., Martha Sutula, Chris Stransky, John Rudolph, and Earl Byron, 2010. Sediment Contaminant Chemistry and Toxicity of Freshwater Urban Wetlands in Southern California. Journal of the American Water Resources Association (JAWRA) 46(2):367-384. DOI: 10.1111/j.1752-1688.2009.00407.x Abstract: Wetlands provide many critical functions in urban ecosystems, including habitat for wetland-dependent fauna and enhancement of water quality. Interest in restoring or creating wetlands to enhance these functions is increasing due to the scale and extent of wetland loss and water quality problems associated with urbanization. One of the most pressing questions associated with urban wetland restoration is the extent to which urban wetlands tend to concentrate contaminants, and if so, whether an associated risk to wildlife exists. The goal of this study was to better understand these potential risks, and the associated tradeoffs with using wetlands to treat urban runoff. Sediment toxicity, contaminant chemistry, and macroinvertebrate (MI) community metrics were measured in 21 southern California wetlands that receive urban runoff as their primary water source. MI organisms in 18 of the 21 urban wetlands examined were considered to be at risk due to sediment contaminant concentrations and toxicity. Most of the sites were either toxic to the amphipod Hyalella azteca, exceeded a sediment quality guideline, or both. Sediment chemistry and toxicity identification evaluation studies suggest that pyrethroid pesticides may have been responsible for much of the toxicity documented in this study. The mean Probable Effects Concentration quotient (an index of degree of sediment contamination) was found to negatively correlate with MI diversity in these wetlands suggesting that toxicity was affecting organisms at the base of the food chain in these wetlands.  相似文献   

18.
Current methods for large-scale vegetation monitoring rely on multispectral remote sensing, which has serious limitation for the detection of vegetation stress. To contribute to the establishment of a generalized spectral approach for vegetation stress detection, this study compares the ability of high-spectral-resolution reflectance (R) and fluorescence (F) foliar measurements to detect vegetation changes associated with common environmental factors affecting plant growth and productivity. To obtain a spectral dataset from a broad range of species and stress conditions, plant material from three experiments was examined, including (i) corn, nitrogen (N) deficiency/excess; (ii) soybean, elevated carbon dioxide, and ozone levels; and (iii) red maple, augmented ultraviolet irradiation. Fluorescence and R spectra (400-800 nm) were measured on the same foliar samples in conjunction with photosynthetic pigments, carbon, and N content. For separation of a wide range of treatment levels, hyperspectral (5-10 nm) R indices were superior compared with F or broadband R indices, with the derivative parameters providing optimal results. For the detection of changes in vegetation physiology, hyperspectral indices can provide a significant improvement over broadband indices. The relationship of treatment levels to R was linear, whereas that to F was curvilinear. Using reflectance measurements, it was not possible to identify the unstressed vegetation condition, which was accomplished in all three experiments using F indices. Large-scale monitoring of vegetation condition and the detection of vegetation stress could be improved by using hyperspectral R and F information, a possible strategy for future remote sensing missions.  相似文献   

19.
Two different methods are commonly used to delineate and characterize wetlands. The U.S. Army Corps of Engineers (ACOE) delineation method uses field observation of hydrology, soils, and vegetation. The U.S. Fish and Wildlife Service’s National Wetland Inventory Program (NWI) relies on remote sensing and photointerpretation. This study compared designations of wetland status at selected study sites using both methods. Twenty wetlands from the Wetland Boundaries Map of the Ausable–Boquet River Basin (created using the revised NWI method) in the Ausable River watershed in Essex and Clinton Counties, NY, were selected for this study. Sampling sites within and beyond the NWI wetland boundaries were selected. During the summers of 2008 and 2009, wetland hydrology, soils, and vegetation were examined for wetland indicators following the methods described in the ACOE delineation manual. The study shows that the two methods agree at 78 % of the sampling sites and disagree at 22 % of the sites. Ninety percent of the sampling locations within the wetland boundaries on the NWI maps were categorized as ACOE wetlands with all three ACOE wetland indicators present. A binary linear logistic regression model analyzed the relationship between the designations of the two methods. The outcome of the model indicates that 83 % of the time, the two wetland designation methods agree. When discrepancies are found, it is the presence or absence of wetland hydrology and vegetation that causes the differences in delineation.  相似文献   

20.
Simplified method for wetland habitat assessment   总被引:2,自引:0,他引:2  
This article presents a wetland habitat assessment technique (HAT) using birds as indicators of habitat quality. The technique is quick, simple, inexpensive, and lends itself to screening large numbers of wetlands. HAT can provide input to more extensive evaluation techniques. Measures of species diversity and rarity are used to assess the quality of the wetland. By applying the notion of ecologically optimum size, the technique addresses the issue of economic efficiency. Results of field testing HAT on 11 tidally influenced wetlands are presented to illustrate HAT's utility. Application of HAT in a variety of situations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号