首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 453 毫秒
1.
Field measurements of N2O emissions from soils are limited for cropping systems in the semiarid northern Great Plains (NGP). The objectives were to develop N2O emission-time profiles for cropping systems in the semiarid NGP, define important periods of loss, determine the impact of best management practices on N2O losses, and estimate direct N fertilizer-induced emissions (FIE). No-till (NT) wheat (Triticum Aestivum L.)-fallow, wheat-wheat, and wheat-pea (Pisum sativum), and conventional till (CT) wheat-fallow, all with three N regimes (200 and 100 kg N ha(-1) available N, unfertilized control); plus a perennial grass-alfalfa (Medicago sativa L.) system were sampled over 2 yr using vented chambers. Cumulative 2-yr N2O emissions were modest in contrast to reports from more humid regions. Greatest N2O flux activity occurred following urea-N fertilization (10-wk) and during freeze-thaw cycles. Together these periods comprised up to 84% of the 2-yr total. Nitrification was probably the dominant process responsible for N2O emissions during the post-N fertilization period, while denitrification was more important during freeze-thaw cycles. Cumulative 2-yr N2O-N losses from fertilized regimes were greater for wheat-wheat (1.31 kg N ha(-1)) than wheat-fallow (CT and NT) (0.48 kg N ha(-1)), and wheat-pea (0.71 kg N ha(-1)) due to an additional N fertilization event. Cumulative losses from unfertilized cropping systems were not different from perennial grass-alfalfa (0.28 kg N ha(-1)). Tillage did not affect N2O losses for the wheat-fallow systems. Mean FIE level was equivalent to 0.26% of applied N, and considerably below the Intergovernmental Panel on Climate Change mean default value (1.25%).  相似文献   

2.
Riparian buffer zones are known to reduce diffuse N pollution of streams by removing and modifying N from agricultural runoff. Denitrification, often identified as the key N removal process, is also considered as a major source of the greenhouse gas nitrous oxide (N2O). The risks of high N2O emissions during nitrate mitigation and the environmental controls of emissions have been examined in relatively few riparian zones and the interactions between controls and emissions are still poorly understood. Our objectives were to assess the rates of N2O emission from riparian buffer zones that receive large loads of nitrate, and to evaluate various factors that are purported to control N emissions. Denitrification, nitrification, and N2O emissions were measured seasonally in grassland and forested buffer zones along first-order streams in The Netherlands. Lateral nitrate loading rates were high, up to 470 g N m(-2) yr(-1). Nitrogen process rates were determined using flux chamber measurements and incubation experiments. Nitrous oxide emissions were found to be significantly higher in the forested (20 kg N ha(-1) yr(-1)) compared with the grassland buffer zone (2-4 kg N ha(-1) yr(-1)), whereas denitrification rates were not significantly different. Higher rates of N2O emissions in the forested buffer zone were associated with higher nitrate concentrations in the ground water. We conclude that N transformation by nitrate-loaded buffer zones results in a significant increase of greenhouse gas emission. Considerable N2O fluxes measured in this study indicate that Intergovernmental Panel on Climate Change methodologies for quantifying indirect N2O emissions have to distinguish between agricultural uplands and riparian buffer zones in landscapes receiving large N inputs.  相似文献   

3.
Urban ecosystems are rapidly expanding and their effects on atmospheric nitrous oxide (N2O) inventories are unknown. Our objectives were to: (i) measure the magnitude, seasonal patterns, and annual emissions of N2O in turfgrass; (ii) evaluate effects of fertilization with a high and low rate of urea N; and (iii) evaluate effects of urea and ammonium sulfate on N2O emissions in turfgrass. Nitrogen fertilizers were applied to turfgrass: (i) urea, high rate (UH; 250 kg N ha(-1) yr(-1)); (ii) urea, low rate (UL; 50 kg N ha(-1) yr(-1)); and (iii) ammonium sulfate, high rate (AS; 250 kg N ha(-1) y(-1)); high N rates were applied in five split applications. Soil fluxes of N2O were measured weekly for 1 yr using static surface chambers and analyzing N2O by gas chromatography. Fluxes of N2O ranged from -22 microg N2O-N m(-2) h(-1) during winter to 407 microg N2O-N m(-2) h(-1) after fall fertilization. Nitrogen fertilization increased N2O emissions by up to 15 times within 3 d, although the amount of increase differed after each fertilization. Increases were greater when significant precipitation occurred within 3 d after fertilization. Cumulative annual emissions of N2O-N were 1.65 kg ha(-1) in UH, 1.60 kg ha(-1) in AS, and 1.01 kg ha(-1) in UL. Thus, annual N2O emissions increased 63% in turfgrass fertilized at the high compared with the low rate of urea, but no significant effects were observed between the two fertilizer types. Results suggest that N fertilization rates may be managed to mitigate N2O emissions in turfgrass ecosystems.  相似文献   

4.
Despite the importance of anhydrous ammonia (AA) and urea as nitrogen (N) fertilizer sources in the United States, there have been few direct comparisons of their effects on soil nitrous oxide (NO) and nitric oxide (NO) emissions. We compared N oxide emissions, yields, and N fertilizer recovery efficiency (NFRE) in a corn ( L.) production system that used three different fertilizer practices: urea that was broadcast and incorporated (BU) and AA that was injected at a conventional depth (0.20 m) (AAc) and at a shallower depth (0.10 m) (AAs). Averaged over 2 yr in an irrigated loamy sand in Minnesota, growing season NO emissions increased in the order BU < AAc < AAs. In contrast, NO emissions were greater with BU than with AAc or AAs. Emissions of NO ranged from 0.5 to 1.4 kg N ha (50-140 g N Mg grain), while NO emissions ranged from 0.2 to 0.7 kg N ha (20-70 g N Mg grain). Emissions of total N oxides (NO + NO) increased in the order AAc < BU < AAs. Despite having the greatest emissions of NO and total N oxides, the AAs treatment had greater NFRE compared with the AAc treatment. These results provide additional evidence that AA emits more NO, but less NO, than broadcast urea and show that practices to reduce NO emissions do not always improve N use efficiency.  相似文献   

5.
In the Red River Valley of the upper midwestern United States, soil temperatures often remain below freezing during winter and N2O emissions from frozen cropland soils is assumed to be negligible. This study was conducted to determine the strength of N2O emissions and denitrification when soil temperatures were below zero for a manure-amended, certified organic field (T2O) compared with an unamended, conventionally managed field (T2C). Before manure application, both fields were similar with respect to autotrophic and heterotrophic N2O production and N2O flux at the soil surface (0.15+/-0.05 mg N2O-N m-2 d-1 for T2O and 0.12+/-0.06 mg N2O-N m-2 d-1 for T2C). After application of pelletized, dehydrated manure, average daily flux (based on time-integrated fluxes from 20 November to 8 April), was 1.19+/-0.34 mg N2O-N m-2 d-1 for T2O and 0.47+/-0.37 mg N2O-N m-2 d-1 for T2C. Denitrification for intact cores measured in the laboratory at -2.5 degrees C was greater for organically managed soils, although only marginally significant (p<0.1). Cumulative emissions for all winter measurements (from 16 November to 8 April) averaged 1.63 kg N2O-N ha-1 for T2O and 0.64 kg N2O-N ha-1 for T2C. Biological N2O production was evident at sub-zero soil temperatures, with winter emissions exceeding those measured in late summer. Late autumn manure application enhanced cumulative N2O-N emissions by 0.9 kg ha-1.  相似文献   

6.
An evaluation of the economic and environmental costs and benefits that would result if the Zorinsky Federal Building, located in Omaha, Nebraska, USA, converted its current lighting system to a more energy-efficient system (i.e., joined the EPA's Green Lights Program) was conducted. Lighting accounts for 20–25 percent of all electricity sold in the United States. Costs considered in the study included the cost of retrofitting the building's existing lighting system and the cost of disposal of the current lamps and ballast fixtures. Benefits included a reduction of electric utility costs and a reduction of emissions of SO2, NO x , CO2, and CO from electric utility power plants. Environmental and health issues for air pollutant emissions were also addressed. The results showed that significant reductions in utility bills as well as reductions in air emissions would result from a major building converting to a more energy efficient lighting system. The results showed that conversion of this large building would reduce SO2 emissions by 14.6 tons/yr and NO x emissions by 6.3 tons/yr. In addition, the conversion would reduce annual energy costs by approximately $114,000.  相似文献   

7.
Here we report N2O emission results for freshwater marshes isolated from human activities at the Sanjiang Experimental Station of Marsh Wetland Ecology in northeastern China. These results are important for us to understand N2O emission in natural processes in undisturbed freshwater marsh. Two adjacent plots of Deyeuxia angustifolia freshwater marsh with different water regimes, i.e., seasonally waterlogged (SW) and not- waterlogged (NW), were chosen for gas sampling, and soil and biomass studies. Emissions of N2O from NW plots were obviously higher than from the SW plots. Daily maximum N2O flux was observed at 13 o′clock and the seasonal maximum occurred in end July to early August. The annual average N2O emissions from the NW marsh were 4.45 μg m−2 h−1 in 2002 and 6.85 μg m−2 h−1 in 2003 during growing season. The SW marsh was overall a sink for N2O with corresponding annual emissions of −1.00 μg m−2 h−1 for 2002 and −0.76 μg m−2 h−1 for 2003. There were significant correlations between N2O fluxes and temperatures of both air and 5-cm-depth soil. The range of soil redox potential 200–400 mV appeared to be optimum for N2O flux. Besides temperature and plant biomass, the freeze–thaw process is also an important factor for N2O emission burst. Our results show that the freshwater marsh isolated from human activity in northeastern China is not a major source of N2O.  相似文献   

8.
The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content.  相似文献   

9.
The aim of this study was to investigate the effect of different application techniques on greenhouse gas emission from co-fermented slurry. Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) emissions were measured in two field experiments with four different application techniques on arable and grassland sites. To gather information about fermentation effects, unfermented slurry was also tested, but with trail hose application only. Co-fermented slurry was applied in April at a rate of 30 m3 ha(-1). Measurements were made every 4 h on the first day after application and were continued for 6 wk with gradually decreasing sampling frequency. Methane emissions were <150 g C ha(-1) from co-fermentation products and seemed to result from dissolved CH4. Only in the grassland experiment were emissions from unfermented slurry significantly higher, with wetter weather conditions probably promoting CH4 production. Nitrous oxide emission was significantly increased by injection on arable and grassland sites two- and threefold, respectively. Ammonia emissions were smallest after injection or trail shoe application and are discussed in the preceding paper. We evaluated the climatic relevance of the measured gas emissions from the different application techniques based on the comparison of CO2 equivalents. It was evident that NH3 emission reduction, which can be achieved by injection, is at least compensated by increased N2O emissions. Our results indicate that on arable land, trail hose application with immediate shallow incorporation, and on grassland, trail shoe application, bear the smallest risks of high greenhouse gas emissions when fertilizing with co-fermented slurry.  相似文献   

10.
In the United States, swine (Sus scrofa) operations produce more than 14 Tg of manure each year. About 30% of this manure is stored in anaerobic lagoons before application to land. While land application of manure supplies nutrients for crop production, it may lead to gaseous emissions of ammonia (NH3) and nitrous oxide (N2O). Our objectives were to quantify gaseous fluxes of NH3 and N2O from effluent applications under field conditions. Three applications of swine effluent were applied to soybean [Glycine max (L.) Merr. 'Brim'] and gaseous fluxes were determined from gas concentration profiles and the flux-gradient gas transport technique. About 12% of ammonium (NH4-N) in the effluent was lost through drift or secondary volatilization of NH3 during irrigation. An additional 23% was volatilized within 48 h of application. Under conditions of low windspeed and with the wind blowing from the lagoon to the field, atmospheric concentrations of NH3 increased and the crop absorbed NH3 at the rate of 1.2 kg NH3 ha(-1) d(-1), which was 22 to 33% of the NH3 emitted from the lagoon during these periods. Nitrous oxide emissions were low before effluent applications (0.016 g N2O-N ha(-1) d(-1)) and increased to 25 to 38 g N2O-N ha(-1) d(-1) after irrigation. Total N2O emissions during the measurement period were 4.1 kg N2O-N ha(-1), which was about 1.5% of total N applied. The large losses of NH3 and N2O illustrate the difficulty of basing effluent irrigation schedules on N concentrations and that NH3 emissions can significantly contribute to N enrichment of the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号