首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
Understanding crop responses to climate is essential to cope with anticipated changes in temperature and precipitation. We investigated the climate–crop yield relationship and the impact of historical climate on yields of rice, maize and wheat in the Koshi basin of Nepal. The results show significant impact of growing season temperature and precipitation on crop production in the region. Rice, maize and wheat cultivated at altitudes below 1,100, 1,350 and 1,700 m amsl (above mean sea level), respectively, suffer from stress due to higher temperatures particularly during flowering and yield formation stages. Responses of crop yields to a unitary increment in growing season mean temperature vary from ?6 to 16 %, ?4 to 11 % and ?12 to 3 % for rice, maize and wheat, respectively, depending on the location and elevation in the basin. In most parts of the basin, we observe warming trends in growing season mean temperatures of rice, maize and wheat over the last few decades with clear evidence of negative impacts on yields. However, at some high-elevation areas, positive impacts of warming are also observed on rice and maize yields. If the observed trends in temperature continue in future, the impact is likely to be mostly negative on crop production in the basin. However, crop production may gain from the warming at relatively higher altitudes provided other conditions, e.g., water availability, soil fertility, are favorable.  相似文献   

2.
Best management practices, such as conservation tillage, the optimum level of irrigation, fertilization, are frequently used to reduce non-point source pollution from agricultural land and improve water quality. In this study, we used the soil and water assessment tool to model the impacts of different irrigation (adjusted to crop need), cropping and fertilization practices on total nitrogen loss. The economic impacts of these practices on crop net farm income were also evaluated. For this purpose, the model was calibrated through comparing model outputs with observations to ensure reliable hydrologic, crop yield and nitrate leaching simulations. The results showed that by reducing water or fertilizer or combination of both, we can reduce nitrate leaching. For wheat and corn, the best scenario was S1n1 (combination between reduction by 10 % of water and nitrogen fertilizer application, simultaneously) and S2n3 (combination of 20 and 30 % reduction in water and fertilizer application), respectively. These scenarios are both ecologically and economically desirable. Also, decreasing nitrogen fertilization by 50 % for corn would decrease the nitrate pollution from 101.1 to 32.3 kg N ha?1; therefore, this strategy is ecologically desirable but economically unsound. So, there are opportunities for environmental decision makers to encourage farmers to implement these strategies. Also, since the nitrogen leaching cannot decrease without a reduction in net farm income for crops such as corn; hence, the losses of farmers should be compensated.  相似文献   

3.
The Central Indian Highland landscape (CIHL) represents a complex, diverse, and highly human-modified system. Nearly half the landscape is cropland, yet it hosts 21 protected areas surrounded and connected by forests. Changing farming practices with increasing access to irrigation might alter this intensifying landscape in the near future particularly in light of weather variability. We analyzed a decade of remote sensing data for cropping patterns and climatic factors combined with census data for irrigation and demographic factors to understand winter cropping trajectories in the CIHL. We quantified ‘productive cropped area’ (PCA), defined as the area with planted crop that is green at the peak of the winter growing season. We find three primary trajectories in PCA—increasing, fluctuating, and decreasing. The most dominant trend is fluctuating PCA in two-thirds of the districts, ranging from ~2.11 million to ~3.73 million ha between 2001 and 2013, which is associated with village-level access to irrigation and local labor dynamics. In 58 % of all districts, clay soils were associated with winter cropping (p < 0.05). Increasing irrigation is associated with increased winter PCA in most (94 %) districts (p < 0.00001). We find strong negative association between PCA and land surface temperature (LST) in most (66 %) districts (p < 0.01). LST closely corresponds to daytime mean air temperature (p < 0.001) for available meteorological stations. Fine-scale meteorological and socioeconomic data, however, are needed to further disentangle impacts of these factors on PCA in this landscape.  相似文献   

4.
We used simple and explicit methods, as well as improved datasets for climate, crop phenology and yields, to address the association between variability in crop yields and climate anomalies in China from 1980 to 2008. We identified the most favourable and unfavourable climate conditions and the optimum temperatures for crop productivity in different regions of China. We found that the simultaneous occurrence of high temperatures, low precipitation and high solar radiation was unfavourable for wheat, maize and soybean productivity in large portions of northern, northwestern and northeastern China; this was because of droughts induced by warming or an increase in solar radiation. These climate anomalies could cause yield losses of up to 50 % for wheat, maize and soybeans in the arid and semi-arid regions of China. High precipitation and low solar radiation were unfavourable for crop productivity throughout southeastern China and could cause yield losses of approximately 20 % for rice and 50 % for wheat and maize. High temperatures were unfavourable for rice productivity in southwestern China because they induced heat stress, which could cause rice yield losses of approximately 20 %. In contrast, high temperatures and low precipitation were favourable for rice productivity in northeastern and eastern China. We found that the optimum temperatures for high yields were crop specific and had an explicit spatial pattern. These findings improve our understanding of the impacts of extreme climate events on agricultural production in different regions of China.  相似文献   

5.
The consequences of climate change on smallholder farms are locally specific and difficult to quantify because of variations in farming systems, complexity of agricultural and non-agricultural livelihood activities and climate-related vulnerability. One way to better understand the issues is to learn from the experiences of farmers themselves. Thus, this study aimed to better understand rainfed upland cropping systems in NW Cambodia and to identify practical, social and economic constraints to adoption of known climate adaptation options applicable to local agro-ecosystems. The study also sought to document the climate change perceptions and adaptation options employed by farmers to mitigate the climate risks. A household survey was conducted in the districts of Sala Krau and Samlout in North-west Cambodia in 2013 where 390 representatives of households were randomly selected for interviews, group discussions and field observations. The majority of respondents perceived that changes had occurred in the rainfall pattern such as a later start to the monsoon season, decreasing annual rainfall, increasing frequencies of drought and dry spells, and warmer temperatures. Farmers reported reductions in crop yields of 16–27 % over the five-year period of 2008–2012. However, these reductions were not evident in provincial data for the same period. Farmers claimed climate impacts resulted in significant yield reductions, but they appear not to have an effective strategy to adapt to the changes in climate. Further regional research is required to refine climate change adaptation strategies for rainfed upland cropping systems in Cambodia.  相似文献   

6.
We analyze longtime series of annual snout positions of several valley glaciers in the northwestern Italian Alps, together with a high-resolution gridded dataset of temperature and precipitation available for the last 50 years. Glacier snout fluctuations are on average negative during this time span, albeit with a period of glacier advance between about 1970 and 1990. To determine which climatic variables best correlate with glacier snout fluctuations, we consider a large set of seasonal predictors, based on our climatic dataset, and determine the most significant drivers by a stepwise regression technique. This in-depth screening indicates that the average glacier snout fluctuations strongly respond to summer temperature and winter precipitation variations, with a delay of 5 and 10 year, respectively. Snout fluctuations display also a significant (albeit weak) response to concurrent (same year) spring temperature and precipitation conditions. A linear regressive model based on these four climatic variables explains up to 93 % of the variance, which becomes 89 % when only the two delayed variables are taken into account. When employed for out-of-sample projections, the empirical model displays high prediction skill, and it is thus used to estimate the average glacier response to different climate change scenarios (RCP4.5, RCP8.5, A1B), using both global and regional climate models. In all cases, glacier snout fluctuations display a negative trend, and the glaciers of this region display an accelerated retreat, leading to a further regression of the snout position. By 2050, the retreat is estimated to be between about 300 and 400 m with respect to the current position. Glacier regression is more intense for the RCP8.5 and A1B scenarios, as it could be expected from the higher severity of these emission pathways.  相似文献   

7.
In Central Europe, management of forests for multiple ecosystem services (ES) has a long tradition and is currently drawing much attention due to increasing interest in non-timber services. In face of a changing climate and diverse ES portfolios, a key issue for forest managers is to assess vulnerability of ES provisioning. In a case study catchment of 250 ha in the Eastern Alps, the currently practiced uneven-aged management regime (BAU; business as usual) which is based on irregularly shaped patch cuts along skyline corridors was analysed under historic climate (represented by the period 1961–1990) and five transient climate change scenarios (period 2010–2110) and compared to an unmanaged scenario (NOM). The study addressed (1) the future provisioning of timber, carbon sequestration, protection against gravitational hazards, and nature conservation values under BAU management, (2) the effect of spatial scale (1, 5, 10 ha grain size) in mapping ES indicators and (3) how the spatial scale of ES assessment affects the simultaneous provision of several ES (i.e. multifunctionality). The analysis employed the PICUS forest simulation model in combination with novel landscape assessment tools. In BAU management, timber harvests were smaller than periodic increments. The resulting increase in standing stock benefitted carbon sequestration. In four out of five climate change scenarios, volume increment was increasing. With the exception of the mildest climate change scenario (+2.6 °C, no change in precipitation), all other analysed climate change scenarios reduced standing tree volume, carbon pools and number of large old trees, and increased standing deadwood volume due to an intensifying bark beetle disturbance regime. However, increases in deadwood and patchy canopy openings benefitted bird habitat quality. Under historic climate, the NOM regime showed better performance in all non-timber ES. Under climate change conditions, the damages from bark beetle disturbances increased more in NOM compared with BAU. Despite favourable temperature conditions in climate change scenarios, the share of admixed broadleaved species was not increasing in BAU management, mainly due to the heavy browsing pressure by ungulates. In NOM, it even decreased and mean tree age increased. Thus, in the long run NOM may enter a phase of lower resilience compared with BAU. Most ES indicators were fairly insensitive to the spatial scale of indicator mapping. ES indicators that were based on sparse tree and stand attributes such as rare admixed tree species, large snags and live trees achieved better results when mapped at larger scales. The share of landscape area with simultaneous provisioning of ES at reasonable performance levels (i.e. multifunctionality) decreased with increasing number of considered ES, while it increased with increasing spatial scale of the assessment. In the case study, landscape between 53 and 100 % was classified as multifunctional, depending on number and combinations of ES.  相似文献   

8.
The region of Apulia, which is located in the south-east tip of the Italian Peninsula, has a typical Mediterranean climate with mild winters and hot-dry summers. Agriculture, an important sector of its economy, is potentially threatened by future climate change. This study describes the evolution of seasonal temperature and precipitation from the recent past to the next decades and estimates future potential impacts of climate change on three main agricultural products: wine, wheat and olives. Analysis is based on instrumental data, on an ensemble of climate projections and on a linear regression model linking these three agricultural products to seasonal values of temperature and precipitation. In Apulia, precipitation and temperature time series show trends toward warmer and marginally drier conditions during the whole analyzed (1951–2005) period: 0.18 °C/decade in mean annual minimum temperature and ?14.9 mm/decade in the annual total precipitation. Temperature trends have been progressively increasing and rates of change have become noticeably more intense during the last 25 years of the twentieth century. Model simulations are consistent with observed trends for the period 1951–2000 and show a large acceleration of the warming rate in the period 2001–2050 with respect to the period 1951–2000. Further, in the period 2001–2050, simulations show a decrease in precipitation, which was not present in the previous 50 years. Wine production, wheat and olive harvest records show large inter-annual variability with statistically significant links to seasonal temperature and precipitation, whose strength, however, strongly depends on the considered variables. Linear regression analysis shows that seasonal temperature and precipitation variability explains a small, but not negligible, fraction of the inter-annual variability of these crops (40, 18, 9 % for wine, olives and wheat, respectively). Results (which consider no adaptation of crops and no fertilization effect of CO2) suggest that evolution of these seasonal climate variables in the first half of the twenty-first century could decrease all considered variables. The most affected is wine production (?20 ÷ ?26 %). The effect is relevant also on harvested olives (?8 ÷ ?19 %) and negligible on harvested wheat (?4 ÷ ?1 %).  相似文献   

9.
The objective of this paper is to analyse the impacts of climate change on a pine forest stand in Central Siberia (Zotino) to assess benefits and risks for such forests in the future. We use the regional statistical climate model STARS to develop a set of climate change scenarios assuming a temperature increase by mid-century of 1, 2, 3 and 4 K. The process-based forest growth model 4C is applied to a 200-year-old pine forest to analyse impacts on carbon and water balance as well as the risk of fire under these climate change scenarios. The climate scenarios indicate precipitation increases mainly during winter and decreases during summer with increasing temperature trend. They cause rising forest productivity up to about 20 % in spite of increasing respiration losses. At the same time, the water-use efficiency increases slightly from 2.0 g C l?1 H2O under current climate to 2.1 g C l?1 H2O under 4 K scenario indicating that higher water losses from increasing evapotranspiration do not appear to lead to water limitations for the productivity at this site. The simulated actual evaporation increases by up to 32 %, but the climatic water balance decreases by up to 20 % with increasing temperature trend. In contrast, the risk of fire indicated by the Nesterov index clearly increases. Our analysis confirms increasing productivity of the boreal pine stand but also highlights increasing drought stress and risks from abiotic disturbances which could cancel out productivity gains.  相似文献   

10.
Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different ‘protein futures’. The scenarios were as follows: intensive and efficient livestock production using today’s species mix; intensive efficient poultry–dairy production; intensive efficient aquaculture–dairy; artificial meat and dairy; livestock on ‘ecological leftovers’ (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a ‘plant-based eating’ scenario. For each scenario, ‘projected diet’ and ‘healthy diet’ variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14–86 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The ‘ecological leftover’ scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels.  相似文献   

11.
Farming in coastal Bangladesh includes rice/shrimp and rice/non-rice cropping systems. The former has been highly profitable but has exacerbated salinization of soil and water. We evaluate the relative profitability, riskiness, and sustainability of the two cropping systems, using data from two coastal villages in Khulna District. Shrimp cultivation was initially very rewarding. However, over 12–15 years, the cropping system experienced declining profitability, increased salinity, and adverse impacts on rice cropping and the local environment. From 2009, farmers adapted the system by changing the pond (gher) infrastructure, adopting delayed planting of a saline-tolerant rice cultivar, flushing out accumulated salt with freshwater during rice cropping, and allowing the soil to dry out after harvesting rice. The budgeting results show that with current management practices, the rice/shrimp system is economically more viable (higher returns to land and labour and less risky) than the rice/non-rice system. Soil analyses showed that while salinity was higher in the gher during the dry season, it was significantly reduced in the wet season and was very similar between the two systems (1–2 dS/m). Hence, as well as being more profitable and less risky, the rice/shrimp system may well be more sustainable than previously observed.  相似文献   

12.
Understanding climate change and its impacts on crops is crucial to determine adaptation strategies. Simulations of climate change impacts on agricultural systems are often run for individual sites. Nevertheless, the scaling up of crop model results can bring a more complete picture, providing better inputs for the decision-making process. The objective of this paper was to present a procedure to assess the regional impacts of climate scenarios on maize production, as well as the effect of crop cultivars and planting dates as an adaptation strategy. The focus region is Santa Catarina State, Brazil. The identification of agricultural areas cultivated with annual crops was done for the whole state, followed by the coupling of soil and weather information necessary for the crop modeling procedure (using crop model and regional circulation models). The impact on maize yields, so as the effect of adaptation strategies, was calculated for the 2012–2040 period assuming different maize cultivars and planting dates. Results showed that the exclusion of non-agricultural areas allowed the crop model to correctly simulate local and regional production. Simulations run without adaptation strategies for the 2012–2040 period showed reductions of 11.5–13.5 % in total maize production, depending on the cultivar. By using the best cultivar for each agricultural area, total state production was increased by 6 %; when using both adaptation strategies—cultivar and best planting date—total production increased by 15 %. This analysis showed that cultivar and planting date are feasible adaptation strategies to mitigate deleterious effects of climate scenarios, and crop models can be successfully used for regional assessments.  相似文献   

13.
This study was an attempt to document the indigenous Lepcha people’s perception on climate change-related issues in five villages of Dzongu Valley located in Kanchandzonga Biosphere Reserve, India. Personal structured questionnaire was used for interview of 300 households selected randomly. Results showed that 85 % of the households have perceived climate change, mainly in the form of increasing temperature and unpredictable pattern of rainfall. In terms of climate change-related events, 75 % of the households believed that wind is becoming warmer and stronger over the past years. Majority of the households have observed changes in crop phenology, while about 90 % agreed that the incidences of insect pest and diseases have increased over the years, especially in their large cardamom crop. A comparison of community perceptions, climatic observations and scientific literature shows that the community have correctly perceived temperature change, unpredictable occurrence of rainfall and increased incidence of insect pest and diseases, which have largely influenced the experiences and perceptions regarding climate-related events. Results reveal that households have adopted the use of locally available material as mulches against soil erosion, to conserve the soil moisture and manage soil temperature. Majority of the households have diversified their cropping system through traditional agroforestry systems and intercropping. Unfortunately, most of the households were unaware about the scientific sustainable approaches to combating impact of climate change. This documentation will aid in assessing the needs in terms of actions and information for facilitating climate change-related adaptation locally in Sikkim state of India.  相似文献   

14.
Excessive summer drying and reduced growing season length are expected to reduce European crop yields in future. This may be partly compensated by adapted crop management, increased CO2 concentration and technological development. For food security, changes in regional to continental crop yield variability may be more important than changes in mean yields. The assessment of changes in regional and larger scale crop variability requires high resolution and spatially consistent future weather, matching a specific climate scenario. Such data could be derived from regional climate models (RCMs), which provide changes in weather patterns. In general, RCM output is heavily biased with respect to observations. Due to the strong nonlinear relation between meteorological input and crop yields, the application of this biased output may result in large biases in the simulated crop yield changes. The use of RCM output only makes sense after sufficient bias correction. This study explores how RCM output can be bias corrected for the assessment of changes in European and subregional scale crop yield variability due to climate change. For this, output of the RCM RACMO of the Royal Netherlands Meteorological Institute was bias corrected and applied within the crop simulation model WOrld FOod STudies to simulate potential and water limited yields of three divergent crops: winter wheat, maize and sugar beets. The bias correction appeared necessary to successfully reproduce the mean yields as simulated with observational data. It also substantially improved the year-to-year variability of seasonal precipitation and radiation within RACMO, but some bias in the interannual variability remained. This is caused by the fact that the applied correction focuses on mean and daily variability. The interannual variability of growing season length, and as a consequence the potential yields too, appeared even deteriorated. Projected decrease in mean crop yields is well in line with earlier studies. No significant change in crop yield variability was found. Yet, only one RCM is analysed in this study, and it is recommended to extend this study with more climate models and a slightly adjusted bias correction taking into account the variability of larger time scales as well.  相似文献   

15.
The effect of changing the planting date on the dry season rice yield was simulated by using the software Decision Support System for Agrotechnology Transfer (DSSAT 4.5) for four rice varieties grown in Kurunegala district, Sri Lanka under expected climate change. Daily weather data up to the year 2090 were downscaled to the district from Global Climate Model outputs under the emission scenarios A2 and B2 published by the Intergovernmental Panel on Climate Change using the Statistical Downscaling Model (SDSM 4.2). The DSSAT model was applied to simulate future rice yields from four rice varieties grown in the district under three different planting dates: (1) planting in May—the base condition; (2) advancing the planting date by 1 month, i.e., to June; and (3) planting 1 month earlier, i.e., in April. Results show that the seasonally averaged dry season rice yield would increase compared to the base condition when the planting date is advanced by 1 month and, on the other hand, the seasonally averaged rice yield would decrease compared to the base condition when the planting date is delayed by 1 month for all four varieties under both A2 and B2 scenarios. Advancing the rice planting date by 1 month for all four rice varieties can be identified as a non-cost climate change adaptation strategy for rice production in Kurunegala district.  相似文献   

16.
Monitoring and detecting trends of climatic variables like rainfall and temperature are essential for agricultural developments in the context of climate change. The present study has detected trends in annual and cropping seasonal rainfall and temperature data for the period of 1961–2011 using Mann–Kendall (MK) test, Spearman’s rho (SR) test and modified Mann–Kendall test that has been applied to the significant lag-1 serial correlated time series data, and slope has been estimated using Sen’s Slope estimator for twelve meteorological stations located in the western part of Bangladesh covering about 41 % of the country. Almost 71 % trends explored by MK test in annual rainfall are statistically insignificant, and SR test also complies it. The spatial distribution of rainfall trend shows insignificant positive trends in major part of the area. Significant positive trends both by MK test and by SR test at 95 % confidence levels are observed at rates of 8.56, 11.15 and 13.66 mm/year at Dinajpur, Rangpur and Khepupara stations, respectively, and the Kharif season rainfall of these stations also shows significant increasing trends except Dinajpur. On the other hand, significant decreasing trends in annual rainfall are found at Bhola (?11.67 mm/year) and Rajshahi (?5.951 mm/year) stations and decreasing trends in rainfall dominated the Pre-Kharif season over the area. But, 83.33 % of the stations show rising trends in annual mean temperature with significant positive trends (as observed by both MK test and SR test) at Rangpur, Bogra, Faridpur, Jessore and Bhola stations where the rate of changes vary from 0.013 °C/year at Faridpur to 0.08 °C/year at Bhola. Most of the trends in Rabi and Pre-Kharif seasons of mean temperatures are not statistically significant. However, all stations except Barisal show significant rising trends in temperature in Kharif season. To cope with this changing pattern of rainfall and temperature, effective adaptation strategies should be taken to keep up the agricultural production that is related to livelihood of the most people and to ensure the country’s food security.  相似文献   

17.
Fire weather indices predict fire extent from meteorological conditions assuming a monotonic function; this approach is frequently used to predict future fire patterns under climate change scenarios using linear extrapolation. However, the relationship between weather and fire extent may potentially depend on the existence of fuel moisture content thresholds above which this relationship changes dramatically, challenging this statistical approach. Here, we combine the continuous and the threshold approaches to analyze satellite-detected fires in Europe during 2001–2010 in relation to meteorological conditions, showing that fire size response to decreasing fuel moisture content follows a ramp function, i.e., with two plateaus separated by a phase of monotonic increase. This study confirms that at continental and high-resolution temporal scales, large fires are very unlikely to occur under moist conditions, but it also reveals that fire size stops to be controlled by fuel moisture content above a given threshold of dryness. Thus, fuel moisture content control only applies when fire is not limited by other factors such as fuel load, as large fires were virtually absent during the considered period in dry regions with less than 500 mm of average annual precipitation, i.e., low-productive areas where fuel amount would be scarce and discontinuous. In regions with sufficient fuel, other factors such as fire suppression or fuel discontinuity can impede large fires even under very dry weather conditions. These findings are relevant under current climatic trends in which the fire season length, in terms of number of days with drought code values above the observed thresholds (break points), is increasing in many parts of the Mediterranean, while it is decreasing in eastern Europe and remains unchanged in central Europe.  相似文献   

18.
Despite recent calls to limit future increases in the global average temperature to well below 2 °C, little is known about how different climatic thresholds will impact human society. Future warming trends have significant global food security implications, particularly for small island developing states (SIDS) that are recognized as being among the most vulnerable to global climate change. In the case of the Caribbean, any significant change in the region’s climate is likely to have significant adverse effects on the agriculture sector. This paper explores the potential biophysical impacts of a +?1.5 °C warming scenario on several economically important crops grown in the Caribbean island of Jamaica. Also, it explores differences to a >?2.0 °C warming scenario, which is more likely, if the current policy agreements cannot be complied with by the international community. We use the ECOCROP niche model to estimate how predicted changes in future climate could affect the growing conditions of several commonly cultivated crops from both future scenarios. We then discuss some key policy considerations for Jamaica’s agriculture sector, specifically related to the challenges posed to future adaptation pathways amidst growing climate uncertainty and complexity. Our model results show that even an increase less than +?1.5 °C is expected to have an overall negative impact on crop suitability and a general reduction in the range of crops available to Jamaican farmers. This observation is instructive as increases above the +?1.5 °C threshold would likely lead to even more irreversible and potentially catastrophic changes to the sustainability of Jamaica’s agriculture sector. The paper concludes by outlining some key considerations for future action, paying keen attention to the policy relevance of a +?1.5 °C temperature limit. Given little room for optimism with respect to the imminent changes that SIDS will need to confront in the near future, broad-based policy engagement by stakeholders in these geographies is paramount, irrespective of the climate warming scenario.  相似文献   

19.
Projected climate change over Turkey has been analyzed by using the reference (1961–1990) and future (2071–2100) climate simulations produced by ICTP-RegCM3. Since examining Turkey as a single region could be misleading due to the existence of complex topography and different climatic regions, Turkey has been separated into seven climatic regions to evaluate the surface temperature and precipitation changes. Comparison of the reference simulation with observations was made spatially by using a monthly gridded data set and area-averaged surface data compiled from 114 meteorological stations for each climatic region of Turkey. In the future simulation, warming over Turkey’s climatic regions is in the range of 2–5 °C. Summer warming over western regions of Turkey is 3 °C higher than the winter warming. During winter, in the future simulation, precipitation decreases very significantly over southeastern Turkey (24 %), which covers most of the upstream of Euphrates and Tigris river basin. This projected decrease could be a major source of concern for Turkey and the neighboring countries. Our results indicate that a significant increase (48 %) in the autumn season precipitation is simulated over southeastern Turkey, which may help to offset the winter deficit and therefore reduce the net change during the annual cycle.  相似文献   

20.
以鄱阳湖流域为研究区,以地表 地下耦合的分布式水文模型WATLAC为模拟工具,探讨流域水资源对气候变化的响应。水文模型以2000~2008年为模拟期,以流域河道日径流量来率定(2000~2005年)与验证模型(2006~2008年)并取得了满意的模拟效果。基于此,假定未来气候变化情景方案,通过径流量、土壤蒸发量和基流量来探讨气候变化对流域水资源的影响。结果表明,径流量与基流量对降雨变化有着较强的敏感性,而土壤蒸发量对温度变化的敏感性较强。在降雨一定条件下,水文变量均与气温变化近似呈线性关系;在气温情景一定条件下,水文变量均与降雨变化呈非线性关系。随着降水的减少,气温对径流、土壤蒸发和基流的影响也随之减弱;气温对上述变量的显著影响主要表现在降水增加的情况下。相同的气温变化情景下,降水增加比降水减少对径流量的影响更加显著,降水减少比降水增加对土壤蒸发量与基流量的影响更加显著,表明降水变化对水文变量有着不同程度和方向的影响作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号