首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Following the Chernobyl accident in 1986, restrictions were placed on the movement and slaughter of sheep within upland areas of the UK because radiocaesium activity concentrations in their meat exceeded 1000 Bq kg(-1) fresh weight. Some farms remain under restriction in 2007. From 1991 to 1993 detailed studies were conducted on three sheep farms within the restricted area of west Cumbria to systematically assess the various parameters which may contribute to the observed variability in radiocaesium activity concentrations within sheep flocks. This paper reports the spatial variation in soil and vegetation activity concentrations across the grazed areas at these farms and determines the influence of grazing behaviour on variability in (137)Cs activity concentrations between individual sheep within the flocks. Together with previously reported results, these new data are used to draw conclusions on the factors determining variability within the three flocks. However, the factors are too site specific to be able to generalise the findings to other farms within the restricted areas of the UK.  相似文献   

2.
A model predicting plant uptake of radiocaesium based on soil characteristics is described. Three soil parameters required to determine radiocaesium bioavailability in soils are estimated in the model: the labile caesium distribution coefficient (kd1), K+ concentration in the soil solution [mK] and the soil solution-->plant radiocaesium concentration factor (CF, Bq kg-1 plant/Bq dm-3). These were determined as functions of soil clay content, exchangeable K+ status, pH, NH4+ concentration and organic matter content. The effect of time on radiocaesium fixation was described using a previously published double exponential equation, modified for the effect of soil organic matter as a non-fixing adsorbent. The model was parameterised using radiocaesium uptake data from two pot trials conducted separately using ryegrass (Lolium perenne) on mineral soils and bent grass (Agrostis capillaris) on organic soils. This resulted in a significant fit to the observed transfer factor (TF, Bq kg-1 plant/Bq kg-1 whole soil) (P < 0.001, n = 58) and soil solution K+ concentration (mK, mol dm-3) (P < 0.001, n = 58). Without further parameterisation the model was tested against independent radiocaesium uptake data for barley (n = 71) using a database of published and unpublished information covering contamination time periods of 1.2-10 years (transfer factors ranged from 0.001 to 0.1). The model accounted for 52% (n = 71, P < 0.001) of the observed variation in log transfer factor.  相似文献   

3.
This paper aims to give an overview of the effect of organic matter on soil-radiocaesium interaction and its implications on soil-to-plant transfer. Studies carried out after the Chernobyl accident have shown that high 137CS soil-to-plant transfer persists in organic soils over years. In most of these soils, the specific sites in clays control radiocaesium adsorption, organic compounds having an indirect effect. Only in organic soils with more than 95% of organic matter content and negligible clay content does adsorption occur mostly on non-specific sites. After a contamination event, two main factors account for the high transfer: the low solid-liquid distribution coefficient, which is due to the low clay content and high NH4+ concentration in the soil solution, and the low K+ availability, which enhances root uptake. The estimation of the reversibly adsorbed fraction, by means of desorption protocols, agrees with the former conclusions, since it cannot be correlated with the organic matter content and shows the lack of specificity of the adsorption in the organic phase. Moreover, the time-dependent pattern of the exchangeable fraction is related to soil-plant transfer dynamics.  相似文献   

4.
Changes in soil solution composition after a flooding event were hypothesised to be one of the key factors in explaining changes in radiocaesium incorporation in the food chain in the areas affected by the Chernobyl accident. A laboratory methodology was set up to monitor changes in the soil solution composition after a sequence of flooding cycles. Experiments were performed using column and batch approaches on test soils with contrasting initial soil solution composition (high and low initial concentrations of K+). Results from column experiments indicated a potential increase in NH(4)(+) concentrations, a parameter which could lead to an increase in the radiocaesium root uptake. Batch results in the soil with high initial K+ concentration showed that after a number of flooding cycles, especially for high ratios of flooding solution/mass of soil, K+ concentration decreased sometimes below a threshold value (around 0.5-1 mmol l(-1)), a fact that could lead to an increase in radiocaesium transfer. For the soils with a low initial K+ concentration, the flooding solution increased K+ and NH(4)(+) values in the soil solution. The comparison of test soils with soils from Ukraine areas affected by flooding showed that the final stage in soil solution composition was similar in both cases, regardless of the initial composition of the soil solution. Moreover, the comparison with unflooded soils from the same area showed that potential changes in other soil parameters, such as (137)Cs activity concentration, clay content, and radiocaesium interception potential, RIP (a parameter that estimates the radiocaesium specific sorption capacity of a soil), should also be monitored for additional effects due to the flooding event. Therefore, the changes in the root uptake would depend on the resulting situation from changes in RIP, K+ and NH(4)(+) values in the soil solution.  相似文献   

5.
Possible role of organic matter in radiocaesium adsorption in soils   总被引:3,自引:0,他引:3  
The aim of this review is to examine the hypothesis that organic matter decreases the adsorption of radiocaesium on clay minerals. The factors that determine radiocaesium mobility and bioavailability in soil are briefly outlined to show why a relationship between soil organic matter content and enhanced Cs bioavailability is paradoxical. In all the investigations reviewed the ionic compositions of both the solid and the solution phases have been strictly controlled. We show that the addition of organic matter to reference clay minerals causes decreases of up to an order of magnitude in the distribution coefficient of radiocaesium. Similarly, the chemical removal of organic matter from the clay-sized fraction of soil usually leads to an increase in Cs adsorption. We suggest that the nature of the organic matter and its interaction with mineral surfaces are as important as the amount present.  相似文献   

6.
In this work, soil-to-plant transfer factors of radiocaesium are predicted based on soil properties such as pH, organic matter content, exchangeable K+ and clay content valid for the tropical environments in Bangladesh, China and Japan, and using a previously published model. Due to insufficient data of soil properties in the selected regions, the average values of pH, organic matter content, exchangeable K+ and clay content were taken as the input model parameters within the ranges given for Asia. Nevertheless, a complete set of soil properties of Japanese soils was used to compare the measured and calculated TF values of radiocaesium for radish. The calculated TF values for radiocaesium are comparable with the measured values especially for leafy parts of a plant. However, calculated values for rice, an important crop in Asia are found to overestimate the measured values due to an overestimate of calculated CECs in soils in the selected regions. The empirical parameters used in the model need to be re-evaluated for the specific part of a plant and/or for a variety of different plants. Alternatively, a general conversion factor for each part of a plant and/or for a variety of different plants for a specific region is suggested for tropical environments.  相似文献   

7.
A sward will often have significant amounts of soil adhered to the vegetation surfaces which will be ingested by grazing animals. If the soil is contaminated by radioactive fallout then it can serve as a dietary source of radionuclides, in addition to any root uptake by the plants. This study is an attempt to quantitatively assess the importance of soil adhesion as a source of radiocaesium to sheep using the RUINS model which simulates radiocaesium transfer in grazing systems.The method of simulating the contamination of vegetation surfaces used by the RUINS model is described, and the importance of the availability of radiocaesium associated with adhered soil relative to plant incorporated radiocaesium discussed. Two sets of simulations are presented: one in which the soil is treated as a medium providing a uniform availability of radiocaesium, and the second in which account is taken of the partitioning of radiocaesium in the soil between ‘fixed’ and ‘labile’ phases.The results demonstrate that, because of the reduced absorption in the gut of radiocaesium associated with soil, animals grazing pastures with significant amounts of radiocaesium associated with adhered soil will not be as contaminated as radiocaesium activity concentrations measured in bulk vegetation samples would suggest. Therefore, the extent of soil adhesion needs to be considered if predictions of radiocaesium contamination of animal products are to be made on the basis of measured activities of sampled vegetation. However, soil adhesion is unlikely to be a significant dietary source of available radiocaesium, unless the soil concerned exhibits an unusually high bioavailability of radiocaesium. Moreover the simulation results indicate that differences in availability between soil types observed experimentally are consistent with the partitioning between fixed and labile soil compartments made by the RUINS model.  相似文献   

8.
The retention of 137Cs in various types of Andosols in Iceland was investigated. Soils were sampled at 29 sites with varying precipitation and environmental conditions. Samples were obtained from 0 to 5, 5 to 10, and 10 to 15 cm depths. The amount of radiocaesium present was quite variable, ranging between 300 and 4800 Bq m(-2) and correlated closely to total annual precipitation (r2=0.71). The majority of 137Cs, 82.7% on average, was retained in the uppermost 5 cm of the soil. The greatest penetration of 137Cs was observed for organic Histosols (76.3% in top 5 cm). The Icelandic Vitrisols (barren, poorly developed Andosols) are coarse grained with only 2-5% clay content and contain little organic matter (<1%). Yet these soils retained 74% of 137Cs in the top 5 cm. The results indicate that radiocaesium fallout is strongly retained by colloidal materials characteristic of Andosols, such as allophane and ferrihydrite. Most soils in Iceland are subject to severe and prolonged freezing and waterlogging; despite this, 137Cs is retained in the upper soil horizons and vertical migration is negligible in Icelandic Andosols. However, erosion and aeolian activity can markedly influence the amount and vertical distribution of radiocaesium in Icelandic soils.  相似文献   

9.
Over the last decade, there has been considerable progress in the development of countermeasures for preventing or reducing contamination of animal products by radioisotopes of iodine, caesium and strontium. In this paper, recent significant technical improvements are summarised and the current availability of countermeasures and their usefulness in the event of a nuclear accident reviewed. An improved understanding of factors controlling the metabolism of radioiodine and radiostrontium has enabled previously suggested countermeasures to be either optimised or dismissed. For radiocaesium in particular, experience since the Chernobyl accident has enabled effective and feasible countermeasures to be identified and successfully implemented in different situations. It has also been more widely understood that countermeasure effectiveness, although important, is not the only criterion which needs to be determined. In addition, cost and practical considerations such as availability, technical feasibility, acceptability and side-effects need to be taken into account. Evaluation of these factors has shown that some previously recommended countermeasures are unlikely to be feasible.  相似文献   

10.
Long-term controlled experiments under natural conditions in the field have been carried out in the Chernobyl Exclusion zone in order to determine the parameters governing radioiodine transfer to plants from four types of soils (podzoluvisol, greyzem and typical and meadow chernozem) homogeneously contaminated in the 20-cm upper layer with an addition of (125)I. An absence of (125)I depletion in arable soil layers due to volatilization was noted up to one year after contamination. During one year, depletion due to the vertical migration of radioiodine from the arable layer of each of the soils did not exceed 4% of the total (125)I content. Radioiodine concentration ratios (CR) were obtained in radish roots, lettuce leaves, bean pods, and wheat grain and straw. The highest CR values were observed in podzoluvisol: 0.01-0.03 for radish roots and lettuce leaves, 0.003-0.004 for bean pods and 0.001 for wheat grains. In the other three soils, these values were one order of magnitude lower. The parameters relating to changes in radioiodine bioavailability were determined, based on the contamination dynamics of plants in field conditions.  相似文献   

11.
The significance of exchange sites on organic matter in the retention of radiocaesium in highly organic soils remains unclear. To quantify this retention, we measured the binding of 134Cs to a humic acid isolated from a British upland peat soil, under a range of chemical conditions. We interpreted our results using Humic Ion Binding Model V, a model of humic substance chemistry which simulates ion exchange by non-specific accumulation of cations adjacent to the humic molecules. Model V could simulate the humic acid-solution partitioning of Cs under all the solution conditions used. The model was used to estimate the contribution of organic matter to Cs sorption by the whole soil composite. An estimate of Cs sorption by illite frayed edge sites was also made. These simulations show that organic matter may play only a minor role in binding Cs. even in highly organic soils.  相似文献   

12.
The feasibility of willow short rotation coppice (SRC) for energy production as a revaluation tool for severely radiocaesium-contaminated land was studied. The effects of crop age, clone and soil type on the radiocaesium levels in the wood were assessed following sampling in 14 existing willow SRC fields, planted on radiocaesium-contaminated land in Sweden following Chernobyl deposition. There was only one plot where willow stands of different maturity (R6S2 and R5S4: R, root age and S, shoot age) and clone (Rapp and L78183 both of age category R5S4) were sampled and no significant differences were found. The soils differed among others in clay fraction (3-34%), radiocaesium interception potential (515-6884 meq kg(-1)), soil solution K (0.09-0.95 mM), exchangeable K (0.58-5.77 meq kg(-1)) and cation exchange capacity (31-250 meq kg(-1)). The soil-to-wood transfer factor (TF) of radiocaesium differed significantly between soil types. The TF recorded was generally small (0.00086-0.016 kg kg(-1)), except for willows established on sandy soil (0.19-0.46 kg kg(-1)). Apart from the weak yet significant exponential correlation between the Cs-TF and the solid/liquid distribution coefficient (R2 = 0.54) or the radiocaesium interception potential, RIP (R2 = 0.66), no single significant correlations between soil characteristics and TF were found. The wood-soil solution 137Cs concentration factor (CF) was significantly related to the potassium concentration in the soil solution. A different relation was, however, found between the sandy Tr?dje soils (CF = 1078.8 x m(K)(-1.83), R2 = 0.99) and the other soils (CF = 35.75 x m(K)(-0.61), R2 =0.61). Differences in the ageing rate of radiocaesium in the soil (hypothesised fraction of bioavailable caesium subjected to fast ageing for Tr?dje soils only 1% compared to other soils), exchangeable soil K (0.8-1.8 meq kg(-1) for Tr?dje soils and 1.5-5.8 meq kg(-1) for the other soils) and the ammonium concentration in the soil solution (0.09-0.31 mM NH4+ for the Tr?dje soils compared to 0.003-0.11 mM NH4+ for the other soils) are put forward as potential factors explaining the higher CF and TF observed for the Tr?dje soils. Though from the dataset available it was not possible to unequivocally predict the Cs-soil-to-wood-transfer, the generally low TFs observed point to the particular suitability for establishment of SRC on radiocaesium-contaminated land.  相似文献   

13.
14.
A dynamic model of radionuclide accumulation in fish is developed. In the model, the fish population is represented by a set of discrete age classes. Each age class is characterized by a specific growth rate, diet and activity of metabolic processes. The model describes all known types of size effect in the contamination of fish with radiocaesium. The detailed dynamics of 137Cs accumulation by fish are demonstrated using the results of the model's application to ichtiofauna in a water body which has a high level of contamination with radiocaesium — namely, the cooling pond of the Chernobyl NPP.  相似文献   

15.
The application of the critical loads methodology for radioactive contamination of Arctic and sub-arctic ecosystems, where natural and semi-natural food products are important components of the diet of many people, is proposed and discussed. The critical load is herein defined as the amount of radionuclide deposition necessary to produce radionuclide activity concentrations in food products exceeding intervention limits. The high transfer of radiocaesium to reindeer meat gives this product the lowest critical load, even though the intervention limit is relatively high compared with other products. Ecological half-lives of radiocaesium in natural and semi-natural products are often very long, and it is therefore important to take account of contamination already present in the event of an accident affecting areas where such products are important. In particular, the long ecological half-life for radiocaesium in moose meat means that the critical load is highly sensitive to prior deposition. An example of the potential application of the method for emergency preparedness is given for the Chernobyl accident.  相似文献   

16.
Rhenium (Re) mobility in agricultural soils was studied in order to obtain information relevant to (99)Tc mobility in soil-to-plant systems. Since water soluble Tc and Re are highly bioavailable, extraction of Re with water was carried out in addition to a total Re determination in the soils. The geometric means of total Re for paddy field, upland field and other soils were 0.34, 0.23, and 0.28 ng g(-1), respectively, while those of water soluble Re (<0.45 microm membrane filterable) were 0.053, 0.015 and 0.008 ng g(-1), respectively. There were no differences for total Re among soil uses; however, the water soluble Re/total Re ratio was significantly higher in paddy field soils (16%) than in other soil uses (6% for upland fields and 3% for other uses). Rhenium mobility and plant availability were higher in paddy fields than in other agricultural fields, and similar phenomena would be expected for (99)Tc.  相似文献   

17.
A study to measure the transfer of radiocaesium to adult female sheep through a breeding cycle is described. The transfer of radiocaesium from the diet to muscle (estimated as the equilibrium transfer coefficient) was significantly lower to pregnant, and especially lactating, animals compared to non-lactating and barren animals. High dry matter intake rates were also associated with significantly lower transfer coefficients. Known relationships between dry matter intake rates and protein turnover could credibly explain some of these differences. However, when described as the concentration ratio, radiocaesium transfer to meat was apparently highest during lactation. The apparent difference in results obtained by the two approaches of determining transfer is the consequence of daily dry matter intake being a denominator within the estimation of transfer coefficient. A wider discussion of transfer coefficients and concentration ratios leads us to suggest that the concentration ratio is the more robust and potentially generic parameter.  相似文献   

18.
The association of radiocaesium with particle size fractions separated by sieving and settling from soils sampled eight years after the Chernobyl accident has been determined. The three size fractions were: <2 microm, 2-63 microm and >63 microm. 137Cs in the soil samples was associated essentially with the finer size fractions, which generally showed specific activities 3-5 times higher than the bulk samples. Activity ratios of 134Cs/137Cs in the clay-sized fractions appear to be lower with respect to the corresponding values in bulk soil samples. This result indicates that some differences still exists in the particle size distribution between 137Cs originating from nuclear weapons, which has been in the soil for decades after fallout, and 137Cs coming from the Chernobyl accident, eight years after the deposition event. This behaviour could be related to "ageing" processes of radiocaesium in soils.  相似文献   

19.
The paper summarizes an evaluation of practicability of rural countermeasures after radioactive fallout in northern conditions carried out by a Finnish group of experts in the FARMING Network project. Snow and soil frost limit the selection of crops, and the short growing season allows mostly one harvest yearly. Cold climate restricts fruit production to apples and berries. Due to the long indoor feeding period, conserved and stored clean feed is available almost all year round. The use of fertilisers and lime on poor and acidic soils leads to high potassium and calcium intake of cows increasing the incidence of milk fever. The surface soil layer is thin and ploughing deeper than 20 cm is problematic due to stony and compacted soils. It also increases soil acidity and decreases fertility. Cultivation of peatlands limits the selection of plants and increases long-term radiocaesium contamination of crops. Frost and snow delay ploughing and spreading of waste milk on arable land, but removal of snow is a decontamination option. Long distances and high transport costs complicate carrying out the countermeasures. The Finnish stakeholder group considered it vital to be prepared for implementation of practicable measures for the safety of food.  相似文献   

20.
The performances of models are assessed to predict the wash-off of radionuclides from contaminated flooded areas. This process should be accounted for in the proper management of the aftermath of a nuclear accident. The contamination of the Pripyat River water following the inundation of a floodplain heavily contaminated by (90)Sr and (137)Cs of Chernobyl origin is used as the basis for modelling. The available experimental evidence demonstrated that remobilisation of radiostrontium is an important process implying a significant secondary radioactive load of water flowing over the contaminated floodplain. On the contrary, there is no empirical evidence of a similar behaviour for radiocaesium. In general, state-of-the-art models properly predicted the remobilisation of strontium, whereas they significantly overestimated radiocaesium concentrations in water. The necessary model improvements for a more accurate prediction of radiocaesium contamination levels include a reassessment of the values of the model parameters controlling the remobilisation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号