首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The need to compare potential health risks to the public associated with different activities that can result in releases of hazardous substances to the environment is becoming increasingly important in decision-making. In making such comparisons, it is desirable to use equivalent indicators of potential health risks for radionuclides, chemical carcinogens, and noncarcinogenic hazardous chemicals. Current approaches to risk assessment that were developed for purposes of protecting human health do not provide equivalent indicators of potential risks from exposure to radionuclides and hazardous chemicals. Comparisons of environmental concentrations or calculated exposures or risks with standards for protection of public health also do not provide equivalent indicators of potential risks. We propose a simple approach to comparative risk assessments in which calculated exposures to any hazardous substances are expressed relative to no-observed-effect levels (NOELs) or, preferably, lower confidence limits of benchmark doses (BMDLs) in humans. This approach provides an equivalent, science-based indicator of the relative risks posed by different exposures to any hazardous substances.  相似文献   

2.
Addressing uncertainties in human health risk assessment is a critical issue when evaluating the effects of contaminants on public health. A range of uncertainties exist through the source-to-outcome continuum, including exposure assessment, hazard and risk characterisation. While various strategies have been applied to characterising uncertainty, classical approaches largely rely on how to maximise the available resources. Expert judgement, defaults and tools for characterising quantitative uncertainty attempt to fill the gap between data and regulation requirements. The experiences of researching 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) illustrated uncertainty sources and how to maximise available information to determine uncertainties, and thereby provide an ‘adequate’ protection to contaminant exposure. As regulatory requirements and recurring issues increase, the assessment of complex scenarios involving a large number of chemicals requires more sophisticated tools. Recent advances in exposure and toxicology science provide a large data set for environmental contaminants and public health. In particular, biomonitoring information, in vitro data streams and computational toxicology are the crucial factors in the NexGen risk assessment, as well as uncertainties minimisation. Although in this review we cannot yet predict how the exposure science and modern toxicology will develop in the long-term, current techniques from emerging science can be integrated to improve decision-making.  相似文献   

3.
There is a growing interest to study human dermal exposure to a large number of chemicals, whether in the indoor or outdoor environment. Such studies are essential to predict the systemic exposure to xenobiotic chemicals for risk assessment purposes and to comply with various regulatory guidelines. However, very little is currently known about human dermal exposure to persistent organic pollutants. While recent pharmacokinetic studies have highlighted the importance of dermal contact as a pathway of human exposure to brominated flame retardants, risk assessment studies had to apply assumed values for percutaneous penetration of various flame retardants (FRs) due to complete absence of specific experimental data on their human dermal bioavailability. Therefore, this article discusses the current state-of-knowledge on the significance of dermal contact as a pathway of human exposure to FRs. The available literature on in vivo and in vitro methods for assessment of dermal absorption of FRs in human and laboratory animals is critically reviewed. Finally, a novel approach for studying human dermal absorption of FRs using in vitro three-dimensional (3D) human skin equivalent models is presented and the challenges facing future dermal absorption studies on FRs are highlighted.  相似文献   

4.
The objective of this exposure assessment was to reconstruct cumulative historical exposures for workers who have been exposed to multiple chemicals and chemical groups to better understand a cluster of brain cancers within a research and development lab. Chemicals of interest, including acrylates, bis-chloromethyl ether (BCME), chloromethyl methyl ether (CMME), isothiazolones and nitrosoamines, were selected on the basis of the plausibility of penetrating the blood-brain barrier and the uniqueness of the chemical's biological activity.In a complicated exposure setting such as a chemical R&D facility, multiple exposure estimation methods were needed. First, similarly exposure groups (SEGs) were created for these materials based on department group, time period of the department's existence and function associated with job titles. A probabilistic framework for assessing exposures was developed using Bayesian analysis of historical monitoring data, mathematical exposure modeling and professional judgments of current and former industrial hygienists at the facility were used to reconstruct the exposure history for acrylates, BCME and CMME for each SEG over the time period of interest. Since sufficient measurement data for isothiazolones and nitrosoamines were not available, the exposure histories for each SEG for these chemicals were estimated. This was done using objective formaldehyde levels and subjective employee interviews. The interviews assessed workplace determinants of exposure as distinct surrogates for estimating inhalation and dermal exposures. The exposure assessments by these methods were compared against each other to estimate the potential for exposure misclassification. A job exposure matrix (JEM) was constructed that contained the exposures obtained from above multiple approaches for each of these chemical groups for each SEG for each year of interest. The combination of methods used in this work is a unique and potentially helpful framework that can be used in analogous workplace settings involving multiple exposures with incomplete objective measurement information.  相似文献   

5.
The recently developed concepts of aggregate risk and cumulative risk rectify two limitations associated with the classical risk assessment paradigm established in the early 1980s. Aggregate exposure denotes the amount of one pollutant available at the biological exchange boundaries from multiple routes of exposure. Cumulative risk assessment is defined as an assessment of risk from the accumulation of a common toxic effect from all routes of exposure to multiple chemicals sharing a common mechanism of toxicity. Thus, cumulative risk constitutes an improvement over the classical risk paradigm, which treats exposures from multiple routes as independent events associated with each specific route. Risk assessors formulate complex models and identify many realistic scenarios of exposure that enable them to estimate risks from exposures to multiple pollutants and multiple routes. The increase in complexity of the risk assessment process is likely to increase risk uncertainty. Despite evidence that scenario and model uncertainty contribute to the overall uncertainty of cumulative risk estimates, present uncertainty analysis of risk estimates accounts only for parameter uncertainty and excludes model and scenario uncertainties. This paper provides a synopsis of the risk assessment evolution and associated uncertainty analysis methods. This evolution leads to the concept of the scenario-model-parameter (SW) cumulative risk uncertainty analysis method. The SMP uncertainty analysis is a multiple step procedure that assesses uncertainty associated with the use of judiciously selected scenarios and models of exposure and risk. Ultimately, the SMP uncertainty analysis method compares risk uncertainty estimates determined using all three sources of uncertainty with conventional risk uncertainty estimates obtained using only the parameter source. An example of applying the SMP uncertainty analysis to cumulative risk estimates from exposures to two pesticides indicates that inclusion of scenario and model sources.  相似文献   

6.
An examination of ecological risk assessment and management practices   总被引:5,自引:0,他引:5  
Ecological risk assessment has grown and evolved since the 1980s, as have new challenges (e.g. global climate change, loss of habitat and biodiversity and the effects of multiple anthropogenic chemicals on ecological systems) that need to be factored into the risk assessment processes. There is also an on-going shift from evaluating adverse health impacts on particular, often small scale, environments to undertaking more complex ecological assessments of whole populations and communities across ecologically meaningful landscapes. These trends are generating an increased demand for much more complex ecological assessments, making it increasingly clear that to achieve its potential as a management tool, methods must be developed to apply ecological risk assessment to larger and more complex scales. This paper reviews the development of the ecological risk assessment paradigm in the United States, identifies ways it is being applied and adapted in other countries, explores future research needs and practice improvements, and examines current issues that need to be considered in taking forward the scientific development of ecological risk assessment as a useful environmental management tool.  相似文献   

7.
For researches on toxic chemicals in settled indoor dust, selection of dust fraction is a critical influencing factor to the accuracy of human exposure risk assessment results. However, analysis of the selection of dust fraction in recent studies revealed that there is no consensus. This study classified and presented researches on distribution of toxic chemicals according to dust particle size and on relationship between dust particle size and human exposure possibility. According to the literature, beyond the fact that there were no consistent conclusions on particle size distribution of adherent fraction, dust with particle size less than 100 μm should be paid more attention and that larger than 250 μm is neither adherent nor proper for human exposure risk assessment. Calculation results based on literature data show that with different selections of dust fractions, analytical results of toxic chemicals would vary up to 10-fold, which means that selecting dust fractions arbitrarily will lead to large errors in risk assessment of human exposure to toxic chemicals in settled dust. Taking into account the influence of dust particle size on risk assessment of human exposure to toxic chemicals, a new methodology for risk assessment of human exposure to toxic chemicals in settled indoor dust is proposed and human exposure parameter systems to settled indoor dust are advised to be established at national and regional scales all over the world.  相似文献   

8.
Humans are simultaneously exposed to a multitude of chemicals. Human health risk assessment of chemicals is, however, normally performed on single substances, which may underestimate the total risk, thus bringing a need for reliable methods to assess the risk of combined exposure to multiple chemicals. Per- and polyfluoroalkylated substances (PFASs) is a large group of chemicals that has emerged as global environmental contaminants. In the Swedish population, 17 PFASs have been measured, of which the vast majority lacks human health risk assessment information. The objective of this study was to for the first time perform a cumulative health risk assessment of the 17 PFASs measured in the Swedish population, individually and in combination, using the Hazard Index (HI) approach. Swedish biomonitoring data (blood/serum concentrations of PFASs) were used and two study populations identified: 1) the general population exposed indirectly via the environment and 2) occupationally exposed professional ski waxers. Hazard data used were publicly available toxicity data for hepatotoxicity and reproductive toxicity as well as other more sensitive toxic effects. The results showed that PFASs concentrations were in the low ng/ml serum range in the general population, reaching high ng/ml and low μg/ml serum concentrations in the occupationally exposed. For those congeners lacking toxicity data with regard to hepatotoxicity and reproductive toxicity read-across extrapolations was performed. Other effects at lower dose levels were observed for some well-studied congeners. The risk characterization showed no concern for hepatotoxicity or reproductive toxicity in the general population except in a subpopulation eating PFOS-contaminated fish, illustrating that high local exposure may be of concern. For the occupationally exposed there was concern for hepatotoxicity by PFOA and all congeners in combination as well as for reproductive toxicity by all congeners in combination, thus a need for reduced exposure was identified. Concern for immunotoxicity by PFOS and for disrupted mammary gland development by PFOA was identified in both study populations as well as a need of additional toxicological data for many PFAS congeners with respect to all assessed endpoints.  相似文献   

9.
Many of the chemicals used in industry can be hazardous to human health and the environment, and some formulations can have undisclosed ingredients and hazards, increasing the uncertainty of the risks posed by their use. The need for a better understanding of the extent of undisclosed information in chemicals arose from collecting data on the hazards and exposures of chemicals used in typical mining operations (copper, platinum and coal). Four main categories of undisclosed chemicals were defined (incomplete disclosure; chemicals with unspecific identities; relative quantities of ingredients not stated; and trade secret ingredients) by reviewing material safety data sheet (MSDS) omissions in previous studies. A significant number of chemicals (20% of 957 different chemicals) across the three sites had a range of undisclosed information, with majority of the chemicals (39%) having unspecific identities. The majority of undisclosed information was found in commercially available motor oils followed by cleaning products and mechanical maintenance products, as opposed to reagents critical to the main mining processes. All three types of chemicals had trade secrets, unspecific chemical identities and incomplete disclosures. These types of undisclosed information pose a hindrance to a full understanding of the hazards, which is made worse when combined with additional MSDS omissions such as acute toxicity endpoints (LD50) and/or acute aquatic toxicity endpoints (LC50), as well as inadequate hazard classifications of ingredients. The communication of the hazard information in the MSDSs varied according to the chemical type, the manufacturer and the regulations governing the MSDSs. Undisclosed information can undermine occupational health protection, compromise the safety of workers in industry, hinder risk assessment procedures and cause uncertainty about future health. It comes down to the duty of care that industries have towards their employees. With a wide range of chemicals increasingly used, there is a balance that needs to be reached between disclosure requirements, trade secret provisions and definitions of hazardous ingredients for market needs, and the information required to protect the health of their workers.  相似文献   

10.
PurposeThe purpose of this paper is to review exposure assessment issues that need to be addressed in designing and interpreting epidemiology studies of phthalates, a class of chemicals commonly used in consumer and personal care products. Specific issues include population trends in exposure, temporal reliability of a urinary metabolite measurement, and how well a single urine sample may represent longer-term exposure. The focus of this review is on seven specific phthalates: diethyl phthalate (DEP); di-n-butyl phthalate (DBP); diisobutyl phthalate (DiBP); butyl benzyl phthalate (BBzP); di(2-ethylhexyl) phthalate (DEHP); diisononyl phthalate (DiNP); and diisodecyl phthalate (DiDP).MethodsComprehensive literature search using multiple search strategies.ResultsSince 2001, declines in population exposure to DEP, BBzP, DBP, and DEHP have been reported in the United States and Germany, but DEHP exposure has increased in China. Although the half-lives of various phthalate metabolites are relatively short (3 to 18 h), the intraclass correlation coefficients (ICCs) for phthalate metabolites, based on spot and first morning urine samples collected over a week to several months, range from weak to moderate, with a tendency toward higher ICCs (greater temporal stability) for metabolites of the shorter-chained (DEP, DBP, DiBP and BBzP, ICCs generally 0.3 to 0.6) compared with those of the longer-chained (DEHP, DiNP, DiDP, ICCs generally 0.1 to 0.3) phthalates. Additional research on optimal approaches to addressing the issue of urine dilution in studies of associations between biomarkers and different type of health effects is needed.ConclusionsIn conclusion, the measurement of urinary metabolite concentrations in urine could serve as a valuable approach to estimating exposure to phthalates in environmental epidemiology studies. Careful consideration of the strengths and limitations of this approach when interpreting study results is required.  相似文献   

11.
Biomonitoring of industrial chemicals in human tissues and fluids has shown that all people carry a “body burden” of synthetic chemicals. Although measurement of an environmental chemical in a person's tissues/fluids is an indication of exposure, it does not necessarily mean the exposure concentration is sufficient to cause an adverse effect. Since humans are exposed to multiple chemicals, there may be a combination effect (e.g., additive, synergistic) associated with low-level exposures to multiple classes of contaminants, which may impact a variety of organ systems. The objective of this research is to link measures of body burden of environmental chemicals and a “holistic” measure of wellness. The approach is demonstrated using biomonitoring data from the National Health and Nutrition Examination Surveys (NHANES). Forty-two chemicals were selected for analysis based on their detection levels. Six biological pathway-specific indices were evaluated using groups of chemicals associated with each pathway. Five of the six pathways were negatively associated with wellness. Three non-zero interaction terms were detected which may provide empirical evidence of crosstalk across pathways. The approach identified five of the 42 chemicals from a variety of classes (metals, pesticides, furans, polycyclic aromatic hydrocarbons) as accounting for 71% of the weight linking body burden to wellness. Significant interactions were detected indicating the effect of smoking is exacerbated by body burden of environmental chemicals. Use of a holistic index on both sides of the exposure-health equation is a novel and promising empirical “systems biology” approach to risk evaluation of complex environmental exposures.  相似文献   

12.
Cumulative risk assessment of chemical exposures in urban environments   总被引:1,自引:0,他引:1  
We performed a cumulative risk assessment for people living in a hypothetical urban environment, called Urbania. The main aims of the study were to demonstrate how a cumulative risk assessment for a middle-sized European city can be performed and to identify the bottlenecks in terms of data availability and knowledge gaps. The assessment focused on five air pollutants (i.e., PM??, benzene, toluene, nonane and naphthalene) and six food pesticides (i.e., acetamiprid, carbendazim, chlorpyrifos, diazinon, imidacloprid and permethrin). Exposure predictions showed that PM??, benzene and naphthalene exposure frequently exceeded the standards, and that the indoor environment contributed more than the outdoor environment. Effect predictions showed that mixture and interaction effects were generally limited. However, model calculations indicated potential synergistic effects between naphthalene and benzene and between chlorpyrifos, diazinon and toluene. PM?? dominated the health impact expressed in Disability Adjusted Life Years (DALYs). We conclude that measures to reduce the health impact of environmental pollution should focus on the improvement of indoor air quality and the reduction of PM?? emissions. Cumulative risk assessment can be improved by (1) the development of person-oriented exposure models that can simulate the cumulative exposure history of individuals, (2) a better mechanistic understanding of the effects of cumulative stressors, and (3) the development of instruments to prioritize stressors for inclusion in cumulative risk assessments.  相似文献   

13.
A critical step in systematic reviews of potential health hazards is the structured evaluation of the strengths and weaknesses of the included studies; risk of bias is a term often used to represent this process, specifically with respect to the evaluation of systematic errors that can lead to inaccurate (biased) results (i.e. focusing on internal validity). Systematic review methods developed in the clinical medicine arena have been adapted for use in evaluating environmental health hazards; this expansion raises questions about the scope of risk of bias tools and the extent to which they capture the elements that can affect the interpretation of results from environmental and occupational epidemiology studies and in vivo animal toxicology studies, (the studies typically available for assessment of risk of chemicals). One such element, described here as “sensitivity”, is a measure of the ability of a study to detect a true effect or hazard. This concept is similar to the concept of the sensitivity of an assay; an insensitive study may fail to show a difference that truly exists, leading to a false conclusion of no effect. Factors relating to study sensitivity should be evaluated in a systematic manner with the same rigor as the evaluation of other elements within a risk of bias framework. We discuss the importance of this component for the interpretation of individual studies, examine approaches proposed or in use to address it, and describe how it relates to other evaluation components. The evaluation domains contained within a risk of bias tool can include, or can be modified to include, some features relating to study sensitivity; the explicit inclusion of these sensitivity criteria with the same rigor and at the same stage of study evaluation as other bias-related criteria can improve the evaluation process. In some cases, these and other features may be better addressed through a separate sensitivity domain. The combined evaluation of risk of bias and sensitivity can be used to identify the most informative studies, to evaluate the confidence of the findings from individual studies and to identify those study elements that may help to explain heterogeneity across the body of literature.  相似文献   

14.
Biodosimetry, the estimation of received doses by determining the frequency of radiation-induced chromosome aberrations, is widely applied in humans acutely exposed as a result of accidents or for clinical purposes, but biodosimetric techniques have not been utilized in organisms chronically exposed to radionuclides in contaminated environments. The application of biodosimetry to environmental exposure scenarios could greatly improve the accuracy, and reduce the uncertainties, of ecological risk assessments and biomonitoring studies, because no assumptions are required regarding external exposure rates and the movement of organisms into and out of contaminated areas. Furthermore, unlike residue analyses of environmental media, environmental biodosimetry provides a genetically relevant biomarker of cumulative lifetime exposure. Symmetrical chromosome translocations can impact reproductive success, and could therefore prove to be ecologically relevant as well. We describe our experience in studying aberrations in the yellow-bellied slider turtle as an example of environmental biodosimetry.  相似文献   

15.
Endocrine disrupting pesticides: implications for risk assessment   总被引:6,自引:1,他引:5  
Endocrine disrupting (ED) chemicals are compounds that alter the normal functioning of the endocrine system, potentially causing disease or deformity in organisms and their offspring. Pesticides are used widely to kill unwanted organisms in crops, public areas, homes and gardens and medicinally to kill parasites. Many are proven or suspected to be EDs. Ancient physiological similarities between different vertebrate groups suggest that disorders observed in wildlife may indicate risks to humans. This makes accurate risk assessment and effective legislation difficult. In this paper, the hazardous properties of pesticides which are known to have ED properties are reviewed in order to assess the implications for risk assessment. As well as data on sources of exposure in the United Kingdom (UK) an assessment of the evidence on the health effects of ED pesticides is also included. In total, 127 have been identified from the literature and their effects and modes of action are listed in this paper. Using the UK as a case study, the types and quantities of pesticides used, and their methods of application are assessed, along with their potential pathways to humans. In the UK reliable data are available only for agricultural use, so non-agricultural routes of pesticide exposure have been poorly quantified. The exposure of people resident in or visiting rural areas could also have been grossly under-estimated. Material links between ED pesticide use and specific illnesses or deformities are complicated by the multifactorial nature of disease, which can be affected by factors such as diet. Despite these difficulties, a large body of evidence has accumulated linking specific conditions to ED pesticides in wildlife and humans. A more precautionary approach to the use of ED pesticides, especially for non-essential purposes is proposed.  相似文献   

16.
Production volumes and the use of engineered nanomaterials in many innovative products are continuously increasing, however little is known about their potential risk for the environment and human health. We have reviewed publicly available hazard and exposure data for both, the environment and human health and attempted to carry out a basic risk assessment appraisal for four types of nanomaterials: fullerenes, carbon nanotubes, metals, and metal oxides (ENRHES project 2009(1)). This paper presents a summary of the results of the basic environmental and human health risk assessments of these case studies, highlighting the cross cutting issues and conclusions about fate and behaviour, exposure, hazard and methodological considerations. The risk assessment methodology being the basis for our case studies was that of a regulatory risk assessment under REACH (ECHA, 2008(2)), with modifications to adapt to the limited available data. If possible, environmental no-effect concentrations and human no-effect levels were established from relevant studies by applying assessment factors in line with the REACH guidance and compared to available exposure data to discuss possible risks. When the data did not allow a quantitative assessment, the risk was assessed qualitatively, e.g. for the environment by evaluating the information in the literature to describe the potential to enter the environment and to reach the potential ecological targets. Results indicate that the main risk for the environment is expected from metals and metal oxides, especially for algae and Daphnia, due to exposure to both, particles and ions. The main risks for human health may arise from chronic occupational inhalation exposure, especially during the activities of high particle release and uncontrolled exposure. The information on consumer and environmental exposure of humans is too scarce to attempt a quantitative risk characterisation. It is recognised that the currently available database for both, hazard and exposure is limited and there are high uncertainties in any conclusion on a possible risk. The results should therefore not be used for any regulatory decision making. Likewise, it is recognised that the REACH guidance was developed without considering the specific behaviour and the mode of action of nanomaterials and further work in the generation of data but also in the development of methodologies is required.  相似文献   

17.
Legislation with respect to dioxins in the workplace   总被引:3,自引:0,他引:3  
  相似文献   

18.
There is a widespread need for the use of quantitative microbial risk assessment (QMRA) to determine reclaimed water quality for specific uses, however neither faecal indicator levels nor pathogen concentrations alone are adequate for assessing exposure health risk. The aim of this study was to build a conceptual model representing factors contributing to the microbiological health risks of reusing water treated in maturation ponds. This paper describes the development of an unparameterised model that provides a visual representation of theoretical constructs and variables of interest. Information was collected from the peer-reviewed literature and through consultation with experts from regulatory authorities and academic disciplines. In this paper we explore how, considering microbial risk as a modular system, following the QMRA framework enables incorporation of the many factors influencing human exposure and dose response, to better characterise likely human health impacts. By using and expanding upon the QMRA framework we deliver new insights into this important field of environmental exposures. We present a conceptual model of health risk of microbial exposure which can be used for maturation ponds and, more importantly, as a generic tool to assess health risk in diverse wastewater reuse scenarios.  相似文献   

19.
There is high demand in environmental health for adoption of a structured process that evaluates and integrates evidence while making decisions and recommendations transparent. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework holds promise to address this demand. For over a decade, GRADE has been applied successfully to areas of clinical medicine, public health, and health policy, but experience with GRADE in environmental and occupational health is just beginning. Environmental and occupational health questions focus on understanding whether an exposure is a potential health hazard or risk, assessing the exposure to understand the extent and magnitude of risk, and exploring interventions to mitigate exposure or risk. Although GRADE offers many advantages, including its flexibility and methodological rigor, there are features of the different sources of evidence used in environmental and occupational health that will require further consideration to assess the need for method refinement. An issue that requires particular attention is the evaluation and integration of evidence from human, animal, in vitro, and in silico (computer modeling) studies when determining whether an environmental factor represents a potential health hazard or risk. Assessment of the hazard of exposures can produce analyses for use in the GRADE evidence-to-decision (EtD) framework to inform risk-management decisions about removing harmful exposures or mitigating risks. The EtD framework allows for grading the strength of the recommendations based on judgments of the certainty in the evidence (also known as quality of the evidence), as well as other factors that inform recommendations such as social values and preferences, resource implications, and benefits. GRADE represents an untapped opportunity for environmental and occupational health to make evidence-based recommendations in a systematic and transparent manner. The objectives of this article are to provide an overview of GRADE, discuss GRADE's applicability to environmental health, and identify priority areas for method assessment and development.  相似文献   

20.
Radioactive particles present a novel exposure pathway for members of the public. For typical assessments of potential doses received by members of the public, habit surveys and environmental monitoring combine to allow the assessment to occur. In these circumstances it is believed that the probability of encounter/consumption is certain. The potential detriment is assessed through sampling the use of environmental monitoring data and dose coefficients such as that in ICRP 60 [ICRP, 1990. 1990 Recommendations of the international commission on radiological protection. Publication 60. Annals of the ICRP 21 (1-3)]. However, radioactive particles often represent a hazard that is difficult to quantify and where the probability of encounter is less than certain as are the potential effects on health. Normal assessment methodologies through sampling and analysis are not appropriate for assessing the impact of radioactive particles either prospectively or retrospectively. This paper details many of the issues that should be considered when undertaking an assessment of the risk to health posed by radioactive particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号