首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
未来50年鄱阳湖流域气候变化预估   总被引:8,自引:0,他引:8  
据 ECHAM5/ MPI OM模式在3种排放情景(SRES高排放A2,中排放A1B,低排放B1)下所做的21世纪前50年气候变化预估试验得到的数据,研究鄱阳湖流域2001~2050年气温和降水相对于目前气候(1961~1990年)的可能变化。结果表明:①未来50年气温在3种排放情景下都将迅速增加,远远高于1990s的增加幅度和速度。A1B情景温度增加最明显,平均气温变化达到162°C。②降水量变化相对复杂,前30年主要为减少趋势,A2情景下减少幅度最大,2020s年均降水量减少了67%;后20年降水量增加,B1情景增加最显著,2030s年增加幅度达到108%。③根据预估的各季节变化结果,1~3月和 4~6月降水量增加;而降水减少主要在7~9月和10~12月,则赣江流域类似于2003~2005年的伏旱、秋旱连冬旱的情况将可能阶段性出现,并在2011~2030年加强。④降水量的空间分异非常明显,东部变化大于西部,南部变化大于北部。⑤如果2001~2050年在A2或A1B情景下,降水序列存在20a的周期振荡;在B1情景下,存在30a的周期振荡。人类排放增加可能弱化振荡强度,并使周期发生变化。  相似文献   

2.
高精度区域气候模式对淮河流域降水的模拟评估   总被引:1,自引:0,他引:1  
利用CCLM(COSMO model in Climate Mode)高精度区域气候模式输出的淮河流域逐日降水数据,计算了年降水量、降水强度、大雨日数和强降水量4个降水指数,首先通过与1961~2010年流域内气象站点的降水观测数据进行对比,检验CCLM模式对淮河流域降水的模拟能力。结果表明,CCLM模式能够很好的模拟淮河流域降水的年际变化和空间分布特征,在4个降水指数中,对年降水量的模拟效果最佳。CCLM模式在SRES-A1B(中排放)情景下的降水预估数据显示,2011~2050年淮河流域降水整体将呈增加趋势,增幅在70 mm之内,降水量年际变率较大,波动范围达-40%~60%,很有可能造成未来旱涝灾害的频繁发生。空间分布上,流域南部和中部在未来40年内降水呈增加趋势,增幅不超过67%,其他区域则呈减少趋势,减幅不超过106%  相似文献   

3.
三峡库区21世纪气候变化的情景预估分析   总被引:3,自引:0,他引:3  
利用政府间气候变化委员会第四次评估报告提供的新一代气候系统模式的模拟结果(IPCC AR4),通过多模式集合方法预估分析了3种排放情景(高排放SRES A2、中等排放SRES A1B和低排放SRES B1)下三峡库区21世纪气候的可能变化。结果表明,挑选模拟性能较好的模式进行的多模式集合对库区气温和降水的变化具有较好的模拟能力,21世纪库区气候总体有显著变暖、变湿的趋势,年平均气温变暖趋势为2.1~4.2℃/100 a,年降水增加趋势为6.1%~9.7%/100 a。就季节变化而言,冬季的变暖幅度最大,降水增加幅度最大。库区年平均气温在21世纪将持续呈上升趋势,而年降水在21世纪前期有减少趋势,在中期和后期逐渐增多。在A2、A1B和B1排放情景,21世纪后期气温分别比常年偏暖3.7、3.3和2.2℃,年降水分别比常年偏多4.4%、5.5%和3.5%。  相似文献   

4.
利用高分辨率区域气候模式CCLM对湖北省降水和气温的模拟数据,对比分析了基准期(1961~2005年)的模拟结果和同期CN05.1的观测数据,并对RCP4.5情景下的未来(2006~2050年)气候进行了年尺度和季节尺度的预估。结果表明:(1)CCLM区域气候模式较好地模拟了湖北气温的演变趋势及其空间分布格局,对降水的时空波动模拟与同期CN05.1在降水时空变化上的匹配度较弱;(2)RCP4.5情景下,2006~2050年湖北T、T_(min)、T_(max)呈上升趋势。四季气温呈一致上升的趋势,冬季的上升速度最快,对年尺度上T、T_(min)、T_(max)上升的趋势贡献最大。(3)RCP4.5情景下,2006~2050年湖北T、T_(min)、T_(max)呈全区一致上升的格局。其中增幅最大的区域均集中于汉江湖北段北部。春季T、T_(min)、T_(max)增温大值区位于西北山地区;夏季中部平原区T、T_(min)、T_(max)相较于其他区域增幅较大;秋季西南山地区T和T_(max)较其他区域增温较高,T_(min)的增温大值区位于汉江湖北段北部;冬季鄂东南丘陵T相较于其他区域增幅较大,汉江湖北段北部T_(min)增温较大,西南山地T_(max)增温较大。  相似文献   

5.
利用用于IPCC AR4的全球气候模式产品,验证其对三峡库区极端降水指数中雨以上日数(R10)模拟能力的基础上,对模拟能力较好的模式进行组合,同时考虑模式的偏差,预估高(A2)、中(A1B)、低(B1)3种排放情景下未来21世纪三峡库区R10的变化。不同排放情景下未来三峡库区R10的变化存在差异。与目前气候(1980~1999年)相比,未来整个21世纪(2011~2100年),A2情景下三峡库区R10平均减少1.7 d,A1B情景下平均减少0.3 d,B1情景下平均增加0.2 d,3种情景平均将减少0.6 d。21世纪初期(2011~2040年)、中期(2041~2070年)和后期(2071~2100年),A2情景下三峡库区R10减少都最多,分别平均减少2.5、1.5和1.0 d;3种情景平均分别减少1.4、0.2和0.1 d。〖  相似文献   

6.
主要从两个方面对汉江流域的降水进行了研究。一方面,以文献综述法对1961~2011年的汉江流域降水研究文献进行了综述,比较了相关研究结果;另一方面,利用国际比较计划CMIP5中5个全球模式降尺度资料,预估了该地区到2049年的降水趋势变化。综述结果表明,1961~2011年历史时段内,汉江流域整体的降水变化较小,无明显的变化趋势,有近于17和30年的周期变化的结论。模式数据的预估结果表明,1961~2049年内,汉江流域整体上年降水没有明显的上升或下降趋势,在RCP4.5情景下存在着近17和30年的周期变化;但在RCP2.6和RCP8.5情景下,降水周期发生了变化。在RCP2.6情景下,较明显的周期为5和11年;在RCP8.5情景下,较明显的周期为8和17年。总体结论上,文献综述和模式数据的研究结果基本一致,即汉江流域过去50年以及未来30年,降水整体上没有显著的趋势变化。  相似文献   

7.
长江上游旱涝指标及其变化特征分析   总被引:2,自引:0,他引:2  
利用长江上游流域51个气象观测站1961~2009年降水资料,计算了各站逐年、四季〖WTBX〗Z〖WTBZ〗指数及区域旱涝指数,在此基础上分析了单站〖WTBX〗Z〖WTBZ〗指数旱涝等级划分的合理性,区域旱涝指数的年代际变化趋势,并对区域典型旱涝年的确定及旱涝成因进行了探讨。结果表明:(1)〖WTBX〗Z〖WTBZ〗指数及以此为基础构建的区域旱涝指数能较好地反映长江上游流域年及四季旱涝变化,作为长江上游流域旱涝指标比较合理;(2)长江上游流域年及四季旱涝有明显的年代际变化特征,年及四季的干旱指数与雨涝指数基本呈反位相特征;(3)长江上游流域四季旱涝与500 hPa高度场分布形势有密切关系,除冬季旱涝与海温场关系较弱外,春、夏、秋季旱涝均与海温场关系密切。研究结论对长江上游流域可持续发展及三峡水库科学运营有一定参考意义  相似文献   

8.
基于长江中下游地区1961~2100年区域气候模式COSMO-CLM(CCLM)模拟与1961~2005年气象站观测的逐日降水数据,通过统计计算年降水量、强降水量、暴雨日数和极端降水贡献率4个极端降水指数,研究全球升温1.5℃与2.0℃情景下,长江中下游地区极端降水的时空变化特征。结果表明:(1)全球升温1.5℃情景下,年降水量相对于1986~2005年减少5%,强降水量、暴雨日数和极端降水贡献率分别增加7%、33%和4%;概率密度曲线表明,年降水量均值下降,强降水量、暴雨日数和极端降水贡献率均值上升,极端降水方差增大;年降水量、强降水量和暴雨日数在空间上表现为南部增加北部减少,极端降水贡献率则相反。(2)全球升温2.0℃情景下,年降水量下降3%,强降水量、暴雨日数和极端降水贡献率分别上升15%、46%和15%;年降水量均值稍有减少且方差稍有上升,强降水量、暴雨日数和极端降水贡献率均值和方差明显增加;年降水量减少区域位于长江主干以北,强降水量、暴雨日数和极端降水贡献率表现为绝大部分地区增加的空间变化特征。(3)全球升温由1.5℃至2.0℃时,年降水量、强降水量、暴雨日数和极端降水贡献率分别增加3%、7%、10%和11%;随升温幅度的增加极端降水均值和方差上升;极端降水呈增加态势的范围扩大。因此,努力将升温控制在1.5℃对降低极端降水的影响具有重要意义。  相似文献   

9.
基于SWAT模型的汉江流域水资源对气候变化的响应   总被引:4,自引:0,他引:4  
汉江流域未来的气候变化趋势和对水资源的影响,将直接关系到南水北调工程和引江济汉工程的使用和效益。因此,分析研究汉江流域水资源对气候变化的响应特点,可为地面调水、空中水资源开发、应对气候变化的不利影响和更好地保护南水北调中线水源区的水资源提供科学依据。以1971~2000年为基准期,应用SWAT模型对汉江流域基准期内的逐月径流进行了模拟;在30 a基准期径流模拟的基础上,以全球变化背景下可能出现的25种不同气候变化模式为假设条件,模拟出各假设气候变化模式下汉江流域水资源状况,获得了各气候变化模式下汉江流域水资源相对于基准期的变化率,研究了汉江流域水资源对气候变化的响应程度。结果表明:模型模拟精度高于评价标准(〖WTBX〗Ens>05,r2>06〖WTBZ〗),SWAT模型适用于汉江流域的径流模拟;不同气候变化情景下,汉江流域径流变化较实际蒸散发的变化明显;降水对地表径流、基流的影响要大于气温;气温对实际蒸散发的影响大于降水;降水增加或气温降低都会导致径流增加,而降水增加或气温增加都会导致实际蒸散发的增加.  相似文献   

10.
不同RCP情景下未来汉江流域气象干旱变化趋势预估研究   总被引:2,自引:0,他引:2  
采用来自国际比较计划CMIP5的5个全球气候模式(GCMs)数据,同时这些模式数据也是跨行业影响模式比较计划(ISIMIP)采用的气候模式数据,以RCP2.6和RCP8.5两种情景下的日降雨预估数据,计算了汉江流域不同时段的标准化降水指数(SPI),以此作为预估未来干旱变化趋势的主要依据。以汉江流域22个气象站点的降雨量观测数据(1960~2004年)和2020~2059年气候模式数据,对比分析了这两个时期干旱事件发生的严重程度、次数和历时特征。结果表明:在干旱严重程度方面,轻度干旱和中度干旱有减轻的趋势,但严重干旱有加重的趋势。由于不同GCMs模拟能力的差异性,对干旱事件的发生次数和历时的分析有一定差异,但总体仍表现为干旱次数减少和历时减短的趋势。通过对比历史时期降水观测数据和GCMs模式预估数据评估结果,表明HadGEM2-ES模式对降水的拟合性最好,而GFDL-ESM2M和IPSL-CM5A-LR在干旱方面表现出较好的模拟能力。  相似文献   

11.
基于长江流域138个气象站1961~2016年的逐月降水观测资料,应用集合经验模态分解(EEMD)方法,分别对各站点的月降水序列进行EEMD分解,然后,运用时滞相关分析和逐步变量选择的方法,以识别长江流域月降水周期振荡和长期趋势的显著影响因子,并构建多元线性回归模型对长江流域月降水进行预测。结果表明:(1)近50多年来,长江流域各站点的月降水呈现出显著的季节、年际和年代际尺度振荡特征。(2)流域内各站点月降水的长期变化趋势存在着较大的空间差异性,表现为金沙江、雅砻江、大渡河以及鄱阳湖流域是月降水长期趋势显著增加的集中区,而岷江中游以及洞庭湖流域的南部是月降水长期趋势显著减少的集中区。(3)厄尔尼诺1+2区的平均海表温度(NINO1+2)的过去模式是影响长江流域月降水周期振荡的主要气候因子,而全球平均气温距平(GlobalT)是影响长江流域月降水长期趋势的主要气候因子。(4)基于已识别的影响因子构建的月降水量预测模型在旱季的预报性能高于雨季,并在长江上游地区的预报性能高于其中下游地区。  相似文献   

12.
以长江、黄河源区为研究对象,应用大尺度半分布式水文模型(VIC),结合江河源区气象站多年实测温度、降水数据,检验了VIC模型的适用性。模型能较好模拟江河源区地表径流,其Nash系数和相关系数分别达到了0.853 3和0.930 2(长江源区),0.889 2和0.924 8(黄河源区)。基于率定后的VIC模型,运用高分辨率的动力降尺度气象强迫资料,分析了未来气候变化情景下,江河源区径流量可能变化趋势。结果表明,未来30~50 a,长江、黄河源区年均径流量将分别增加858%、919%;未来80~100 a,长江、黄河源区年均径流量将分别增加1716%、721%。相对于2030~2049年而言,尽管年均降水增加006 mm/d,但是黄河源区2080~2099年径流量却将减少1.98%。运用植被情景假设及2030~2049年动力降尺度气象资料,模拟分析了植被变化对江河源区地表径流的影响。从4种地表覆被情景假设可以看出,林地地表覆被产生径流量最小,裸地最大。
  相似文献   

13.
基于长江流域1963~2016年131个气象站点逐日降水资料,计算了年降水、强降水(极端降水和暴雨)的集中度(PCD)、集中期(PCP),并结合M-K非参数性趋势检验分析以及相关分析等方法对长江流域降水非均匀性分布特征及其趋势进行了分析,目的在于揭示不同类型降水量在流域内非均匀性分布的特征,加强对强降水在时空分布上的理解。结果表明:流域多年平均年内日降水量集中度(PCDDP)、集中期(PCPDP)均由下游向上游递增,PCDDP变化趋势不显著而PCPDP变化趋势在空间上差异明显,在流域中下游呈增长趋势、上游呈减小趋势;年降水量与PCDDP呈显著正相关的地区主要分布在四川盆地;流域年极端降水量PCDEP、PCPEP的多年平均分布及变化趋势与PCDDP、PCPDP相似。流域多年平均暴雨量(日降水≥50 mm)从下游向上游递减,在四川盆地较四周高,暴雨在流域东部呈增长趋势,在四川盆地呈减小趋势;年暴雨量集中度(PCDRP)、集中期(PCPRP)从流域东南向西北递减,在湖北、贵州以及四川东部PCDRP呈增加趋势,在流域东南部呈减小趋势;PCPRP在江浙、安徽、湖南及贵州地区呈不明显的增加趋势,在四川、云南等地呈减少趋势。  相似文献   

14.
2010年9月~2012年8月在长江上游攀枝花等9个采样点收集到长薄鳅(Leptobotia elongata Bleeker)样本1 528尾,基于体长频率数据采用世界粮农组织(FAO)开发的FiSAT II软件研究了长江上游长薄鳅的生长与种群参数。估算结果显示长薄鳅的极限体长(L∞)为6561 mm,生长系数(k)为015/a,理论生长起点年龄(t0)为-0048 a。采用Pauly的经验公式估算长薄鳅的自然死亡系数(M)为033(其中长江上游年平均水温为184℃),总死亡系数(Z)、捕捞死亡系数(F)和开发率(E)分别为085、053和062。2010~2011年长江上游长薄鳅年均资源重量和资源数量分别为1321 t和162 862尾,最大可持续产量(MSY)为517 t。经相关估算参数和相对单位补充渔获量分析得出,当前长江上游长薄鳅已处于过度捕捞状态,有必要采取有效保护措施  相似文献   

15.
利用1963~2015年长江流域115个气象站点逐日降水数据,分析了不同极端降水指标的空间变化特点和时间变化趋势。结果表明,近53 a来,长江流域多年平均年极端降水量与年降水量从下游到上游逐渐递减,两者变化趋势大致呈现“增-减-增”的空间分布格局。年极端降水量对年降水量贡献(PEP)存在明显的空间分布差异,但贡献比例在流域内普遍呈现增加的趋势。持续1 d的极端降水事件的降水量分布及其变化趋势与年极端降水量的分布特征类似,其对年极端降水量的贡献比例高达65%以上,说明长江流域极端降水以持续1 d的极端降水事件为主。持续2 d及以上的极端降水事件主要集在中皖苏赣局部地区和四川中部地区,但其降水量对年极端降水量的贡献比例较小。从上游到下游,年最大日降水量(MDP)逐渐增大。其中,上游源头地区的沱沱河、曲麻莱和玉树3个站点MDP主要集中在0~25 mm之间,其他站点均以25~50 mm量级为主;长江流域中部地区的MDP大部分以50~100 mm的量级为主,处于100~150 mm之间的次之;长江流域东部地区主要以100~150 mm量级的MDP为主。 关键词: 极端降水;降水贡献;不同历时;长江流域  相似文献   

16.
本文采用长江流域内分布较均匀、无缺测站点的1960~2010年逐日降水资料,借助趋势和突变分析、R/S分析和水文频率分析等方法,研究该流域极端降水的时空演变特征和未来趋势。结果表明:(1)长江流域区域平均气候平均降水量(PAV)、简单日降水强度(PINT)、强降水贡献率(PQ95)、强降水阈值(PF95)、最大1日-10日降水量(PX1D-PX10D)基本均呈上升趋势,中下游各极端降水指数均大于上游,同时,中下游的各指数年际变化比上游更剧烈。(2)PAV与PF95的空间分布类似,但前者在流域中部地区下降、两侧上升,而后者为中部上升、两侧下降;PINT与PQ95的空间分布相似,均为大部分地区呈上升趋势,仅西北部下降。PX1D-PX10D总体上以上升为主,但随着持续时间的增长,下降的区域有明显的扩大,而上升的区域有明显的缩小。(3)未来长江流域极端降水将以现有趋势继续发展,并将以上升趋势为主,流域洪涝灾害风险加大。(4)遂宁站PX1D、安化站PX10D极端降水的频率分析表明,直接采用整体数据计算设计降水量会使结果偏于不安全,对于较长重现期的设计降水表现更显著,因此对于极端降水量发生显著变化的情况需要深入研究,探讨更好的设计降水估计方法。  相似文献   

17.
汉江流域1951~2003年降水气温时空变化趋势分析   总被引:26,自引:0,他引:26  
利用Mann Kendall检验方法和空间插值方法,分析了1951~2003年汉江流域年和春、夏、秋、冬四季降水和气温变化趋势的时空分布,并重点分析了丹江口水库上游年降水、年平均气温和北半球气温的变化趋势及相互间的联系。分析发现,在显著性水平α=0.1上,近50年来汉江流域大部分地区降水没有明显的变化趋势,气温呈上升趋势。丹江口水库上游降水在1991年发生突变,从20世纪80年代多雨期进入90年代少雨期,80年代平均降水比1951~2003年多年平均降水多9.7%,90年代平均降水比多年平均降水少11.6%;上游平均气温90年代比多年平均气温高0.2℃,而同期北半球的平均气温也比多年平均高了0.3℃,上游气温同北半球气温同步上升,而上游降水变化受北半球气温升高的影响不断减少,两者之间存在反相关系。分析成果有助于进一步研究气候变化对汉江流域水资源和防洪安全的影响,也将为南水北调中线工程的顺利实施提供科学依据。  相似文献   

18.
为进一步了解安徽省沿江地区棉花生长季气候变化特征及其对产量的影响,以安徽省沿江地区12个棉花主产市、县气象观测站1961~2010年逐日平均气温、降水量和日照时数气象数据为基础,采用线性趋势法和Mann Kendall非参数检验法,分析了平均气温、≥10℃积温、降水量、日照时数等气象要素的变化特征,并讨论其变化对棉花气象产量的影响。结果表明:近50 a,安徽省沿江地区棉花生长季平均气温和≥10℃积温均呈明显增加趋势(P<001),平均每10 a分别增加016℃和3713℃·d;降水量无明显变化趋势(P>005);日照时数显著减少(P<001),平均每10 a减少4692 h。棉花气象产量与生长季降水量、日照时数呈极显著相关关系,与平均气温、≥10℃积温相关不明显;平均气温、≥10℃积温和日照时数的增加均有利于棉花产量的提高,而降水过多不利于棉花产量的形成  相似文献   

19.
近52a长江中下游地区极端降水的时空变化特征   总被引:3,自引:0,他引:3  
长江中下游地区是我国主要农业区,同时也是降水异常,洪涝灾害频繁发生的地区之一,对长江中下游地区极端降水变化的研究,可以为该区农业生产及防洪减灾提供参考依据。利用1961~2012年间的长江中下游地区84个站点的逐日降水观测资料,基于年最大日降水(AM)序列与超门限峰值降水(POT)序列,通过滑动平均、Mann-Kendall检验法、线性倾向估计等方法,分析了该地区极端降水事件的时空变化特征。结果表明:(1)长江中下游地区近52a来极端降水量呈现为较明显的增加趋势,且极端降水量速率为9.3mm/10a,存在较为明显的年代际波动变化特征,1990年以后进入极端降水量偏多的时期;(2)AM与POT序列多年平均值大值主要分布在江西省大部、湖北东南部以及安徽南部;AM与POT序列多年标准差大值主要分布江西东南部与北部,湖北东南部以及湖南西北部;AM序列多年平均值与标准差均高于POT序列,AM序列年际间振幅要明显强于POT序列,极端降水年际变化幅度大于年内变化;(3)长江中下游沿岸地区年最大日降水量主要表现为增加趋势,长江以北的西部地区则主要表现为减少趋势;长江沿岸地区以及中东部地区的极端降水量主要表现为增加趋势,西部地区则主要表现为减少趋势。  相似文献   

20.
利用长江流域146个气象站点1960~2005年的逐年气温资料,选用EOF和REOF方法识别长江流域年平均气温空间变化特征,并对长江流域年平均气温变化敏感区域进行时间演变分析和突变检测。研究表明:长江流域年平均气温主要有2种空间振荡型(即全流域气温变化趋向一致型和流域内气温变化存在东西向差异型),3个变化敏感区域(长江流域中下游地区、长江流域南部和金沙江流域)。3个变化敏感区域的年平均气温都在20世纪90年代明显升高,且均在90年代后期呈突变增加,其中金沙江流域升温趋势最为明显,气候倾向率为0.20℃/10a。全流域1991~2005年年平均气温距平空间分布表明,自1991年以来全流域都为升温趋势,其中长江流域中下游地区和金沙江流域是升温幅度最大的地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号