首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundMotor vehicle emissions contribute nearly a quarter of the world's energy-related greenhouse gases and cause non-negligible air pollution, primarily in urban areas. Changing people's travel behaviour towards alternative transport is an efficient approach to mitigate harmful environmental impacts caused by a large number of vehicles. Such a strategy also provides an opportunity to gain health co-benefits of improved air quality and enhanced physical activities. This study aimed at quantifying co-benefit effects of alternative transport use in Adelaide, South Australia.MethodWe made projections for a business-as-usual scenario for 2030 with alternative transport scenarios. Separate models including air pollution models and comparative risk assessment health models were developed to link alternative transport scenarios with possible environmental and health benefits.ResultsIn the study region with an estimated population of 1.4 million in 2030, by shifting 40% of vehicle kilometres travelled (VKT) by passenger vehicles to alternative transport, annual average urban PM2.5 would decline by approximately 0.4 μg/m3 compared to business-as-usual, resulting in net health benefits of an estimated 13 deaths/year prevented and 118 disability-adjusted life years (DALYs) prevented per year due to improved air quality. Further health benefits would be obtained from improved physical fitness through active transport (508 deaths/year prevented, 6569 DALYs/year prevented), and changes in traffic injuries (21 deaths and, 960 DALYs prevented).ConclusionAlthough uncertainties remain, our findings suggest that significant environmental and health benefits are possible if alternative transport replaces even a relatively small portion of car trips. The results may provide assistance to various government organisations and relevant service providers and promote collaboration in policy-making, city planning and infrastructure establishment.  相似文献   

2.
Several studies have shown that a significant amount of daily air pollution exposure, in particular Black Carbon (BC), is inhaled during bicycle trips. Previously, the instantaneous BC exposure of cyclists was modeled as the sum of a background concentration and a local traffic related component based on a local assessment of traffic noise. We present a fast and low cost methodology to achieve a city-wide assessment of yearly average BC exposure of cyclists along their trips, based on a city-wide mobile noise sensing campaign.The methodology requires participatory sensing measurements of noise, partially combined with BC and/or other air pollutants sensitive to local traffic variations. The combined measurements cover the spatial and meteorological variability and provide the data for an instantaneous exposure model. The mobile noise-only measurements map the full city; and yearly meteorology statistics are used to extrapolate the instantaneous exposure model to a yearly average map of in-traffic air pollution exposure. Less than four passages at each segment along the network with mobile noise equipment are necessary to reach a standard error of 500 ng/m3 for the yearly average BC exposure.A strong seasonal effect due to the BC background concentration is detected. The background contributes only 25% to the total trip exposure during spring and summer. During winter the background component increases to 50–60%. Engine related traffic noise along the bicyclist's route is a valid indicator of the BC exposure along the route, independent of the seasonal background. Low exposure route selection results in an exposure reduction of 35% in winter and 60% in summer, sensitive to the weather conditions, specific trip attributes and the available alternatives.The methodology is relevant for further research into the local effects of air pollution on health. Mobile noise mapping adds local traffic data including traffic dynamics into the air pollution exposure assessments. Local policy makers and urban planners can use the results to support the implementation of low exposure infrastructure, create awareness through route planners and achieve behavioral changes toward active travel modes.  相似文献   

3.
BackgroundStudies have found long-term exposure to traffic noise to be associated with higher risk for hypertension, ischemic heart disease and stroke. We aimed to investigate the novel hypothesis that traffic noise increases the risk of atrial fibrillation (A-fib).MethodsIn a population-based cohort of 57,053 people aged 50–64 years at enrolment in 1993–1997, we identified 2692 cases of first-ever hospital admission of A-fib from enrolment to end of follow-up in 2011 using a nationwide registry. The mean follow-up time was 14.7 years. Present and historical residential addresses were identified for all cohort members from 1987 to 2011. For all addresses, exposure to road traffic and railway noise was estimated using the Nordic prediction method and exposure to air pollution was estimated using a validated dispersion model. We used Cox proportional hazard model for the analyses with adjustment for lifestyle, socioeconomic position and air pollution.ResultsA 10 dB higher 5-year time-weighted mean exposure to road traffic noise was associated with a 6% higher risk of A-fib (incidence rate ratio (IRR): 1.06; 95% confidence interval (95% CI): 1.00–1.12) in models adjusted for factors related to lifestyle and socioeconomic position. The association followed a monotonic exposure–response relationship. In analyses with adjustment for air pollution, NOx or NO2, there were no statistically significant associations between exposure to road traffic noise and risk of A-fib; IRR: 1.04; (95% CI: 0.96–1.11) and IRR: 1.01; (95% CI: 0.94–1.09), respectively. Exposure to railway noise was not associated with A-fib.ConclusionExposure to residential road traffic noise may be associated with higher risk of A-fib, though associations were difficult to separate from exposure to air pollution.  相似文献   

4.
Cumulative risk assessment of chemical exposures in urban environments   总被引:1,自引:0,他引:1  
We performed a cumulative risk assessment for people living in a hypothetical urban environment, called Urbania. The main aims of the study were to demonstrate how a cumulative risk assessment for a middle-sized European city can be performed and to identify the bottlenecks in terms of data availability and knowledge gaps. The assessment focused on five air pollutants (i.e., PM??, benzene, toluene, nonane and naphthalene) and six food pesticides (i.e., acetamiprid, carbendazim, chlorpyrifos, diazinon, imidacloprid and permethrin). Exposure predictions showed that PM??, benzene and naphthalene exposure frequently exceeded the standards, and that the indoor environment contributed more than the outdoor environment. Effect predictions showed that mixture and interaction effects were generally limited. However, model calculations indicated potential synergistic effects between naphthalene and benzene and between chlorpyrifos, diazinon and toluene. PM?? dominated the health impact expressed in Disability Adjusted Life Years (DALYs). We conclude that measures to reduce the health impact of environmental pollution should focus on the improvement of indoor air quality and the reduction of PM?? emissions. Cumulative risk assessment can be improved by (1) the development of person-oriented exposure models that can simulate the cumulative exposure history of individuals, (2) a better mechanistic understanding of the effects of cumulative stressors, and (3) the development of instruments to prioritize stressors for inclusion in cumulative risk assessments.  相似文献   

5.
This study has attempted to estimate the energy consumption and emission of pollutants namely carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC) from the road transport sector in Malaysia from the year 2012 till 2040. This was done using the long-range energy alternatives planning (LEAP) model. Estimates of energy consumption and emissions were evaluated and analysed under a business-as-usual scenario and three other alternative fuel policy scenarios of biodiesel vehicles (BIO), natural gas vehicles (NGV) and hybrid electric vehicles (HEV). The aim of this study has been to identify the potential alternative fuel policies that would be effective in reducing the future growth of road transport energy consumption and emission in Malaysia. Results indicate that the NGV scenario contributes towards the highest reduction in road transport energy consumption followed by BIO and HEV. The NGV scenario also achieves highest mitigation of emission of all the four pollutants. In the case of CO2 emission, BIO scenario attains second highest mitigation, whereas in the event of CO, NOx and NMVOC emission, HEV scenario achieves second highest mitigation.  相似文献   

6.
This study examines the relationship between air pollution, social deprivation and health in the city of Leeds, UK under a baseline and three distance-based road user charging (RUC) scenarios set at 2 pence, 10 pence and 20 pence/km. Through application of a series of linked models of traffic, emission and pollutant dispersion, air quality was modelled in response to RUC scenarios. The pollutant modelled were NO(2), PM(10), CO, benzene and 1,3-butadiene, though results of NO(2) are used in this study. The RUC scenarios were compared with the 'base' scenario, all set for the year 2005. The RUC initiatives result in the differences in ambient concentrations of NO(2). The study correlates NO(2) concentrations with derived indices of social deprivation and health. The study concludes that positive but weak relationship exists between air quality and social deprivation, and indicates that deprived population groups are disproportionately exposed to higher NO(2) levels. The relationship between air quality and health status of the population is weak. There is a strong relationship between social deprivation and health status of the population. The study concludes that RUC scenarios result in reducing disparity between affluent and deprived populations.  相似文献   

7.
The proposed effect of road traffic noise on hypertension and ischemic heart disease finds mixed empirical support. One problem with many studies is that the directions of the causal relationships are not identified. This is often the case when cross-sectional data and multivariate regression models are utilised. The aim of the study was to explore the relationship between road traffic noise and health. More specifically the relationships between noise complaints, noise sensitivity and subjectively reported hypertension and heart problems were investigated. 1842 respondents in Oslo, Norway were interviewed about their experience of the local environment and their subjective health complaints. The interviews were conducted as part of two surveys. Individual measures of air pollution (NO(2)) and noise (Lden) were calculated. The data were analysed using Structural Equation Models. Only sensitivity to noise is related to hypertension and chest pain. No relationships between noise exposure and health complaints were identified. Rather than noise being the causal agent leading to health problems, the results suggest that the noise-health relationships in these studies may be spurious. It is conceivable that individual vulnerability is reflected both in ill health and in being sensitive to noise. The benefit of including more contextual variables in a model of noise-health relationships is supported.  相似文献   

8.
ObjectiveEstimate the health risks and benefits of mode shifts from car to cycling and public transport in the metropolitan area of Barcelona, Spain.MethodsWe conducted a health impact assessment (HIA), creating 8 different scenarios on the replacement of short and long car trips, by public transport or/and bike. The primary outcome measure was all-cause mortality and change in life expectancy related to two different assessments: A) the exposure of travellers to physical activity, air pollution to particulate matter < 2.5 μm (PM2.5), and road traffic fatality; and B) the exposure of general population to PM2.5, modelling by Barcelona Air-Dispersion Model. The secondary outcome was a change in emissions of carbon dioxide.ResultsThe annual health impact of a shift of 40% of the car trips, starting and ending in Barcelona City, to cycling (n = 141,690) would be for the travellers who shift modes 1.15 additional deaths from air pollution, 0.17 additional deaths from road traffic fatality and 67.46 deaths avoided from physical activity resulting in a total of 66.12 deaths avoided. Fewer deaths would be avoided annually if half of the replaced trips were shifted to public transport (43.76 deaths). The annual health impact in the Barcelona City general population (n = 1,630,494) of the 40% reduction in car trips would be 10.03 deaths avoided due to the reduction of 0.64% in exposure to PM2.5. The deaths (including travellers and general population) avoided in Barcelona City therefore would be 76.15 annually. Further health benefits would be obtained with a shift of 40% of the car trips from the Greater Barcelona Metropolitan which either start or end in Barcelona City to public transport (40.15 deaths avoided) or public transport and cycling (98.50 deaths avoided).The carbon dioxide reduction for shifting from car to other modes of transport (bike and public transport) in Barcelona metropolitan area was estimated to be 203,251 t/CO2 emissions per year.ConclusionsInterventions to reduce car use and increase cycling and the use of public transport in metropolitan areas, like Barcelona, can produce health benefits for travellers and for the general population of the city. Also these interventions help to reduce green house gas emissions.  相似文献   

9.
特大型城市客运交通碳排放与减排对策研究   总被引:2,自引:0,他引:2  
本文基于对现有城市交通碳排放测算方法的比较分析,以上海市为例,采用IPCC"自下而上"法对特大型城市客运交通CO2排放进行了测算,结果显示:轨道交通是碳排放效率最高的客运方式,出租车最低;客运交通CO2排放总量增长迅速,且碳源结构发生了较大变化;近年客运交通CO2排放增量主要来自私人载客汽车,同时公务交通在客运交通碳排放中始终占较大比重。由此本文认为,控制客运交通碳排放的关键在于对以私人载客汽车和单位载客汽车为主的个体交通的管理和控制,形成以公共交通为主的交通结构。在此基础上,为了将控制碳排放纳入到城市交通政策目标中去,本文就主要城市交通政策对客运交通碳排放产生的影响进行了深入分析,并得出结论:以往的交通供给、需求管理政策对于抑制客运交通碳排放增长的作用有限;而就目前城市空间发展政策的实施效果而言,也不利于降低居民出行的碳排放水平。文章最后分别从交通供给、需求管理以及城市空间角度给出了控制客运交通碳排放的对策。  相似文献   

10.
道路拥堵与城市雾霾是机动车行驶带来的两个负溢出效应,大量文献揭示了城市机动车行驶对二者带来的影响,却鲜有文献关注道路拥堵程度与雾霾污染之间的内在联系。这其中的缘由在于,一则道路拥堵程度与雾霾污染之间互为因果,同时有共同的影响因素,由此带来的内生性难题难以有效解决;其次,采用统一标准来测度不同城市道路拥堵程度的数据难以获得。为此利用高德地图(Amap)根据机动车定位导航系统提供的城市拥堵延时的大数据,来捕获各省会城市每日道路交通的拥堵程度,同时运用各城市每日的燃油销售价格、国际市场原油价格以及上一周同一工作日道路的拥堵程度作为工具变量,通过两阶段最小二乘法(2SLS)估计道路拥堵程度对城市雾霾污染的影响。回归结果表明:①以城市燃油价格作为工具变量时,道路拥堵程度每增加1%,会导致省会城市PM2.5、PM10分别增加6.5%和6.7%;②以国际原油价格、上一周同一个工作日拥堵程度作为工具变量,以及改用GMM方法进行估计时,基准回归的结论仍然稳健,城市的治堵举措与治霾举措能够相互协同;③进一步以省会城市新增轨道交通来实现治堵和治霾的例子表明,发展轨道交通来实现治堵与治霾的协同效应,要以有效治堵作为前提,否则减排治霾的协同效果无法实现。  相似文献   

11.
Transportation is a sector with high energy consumption as well as high emissions. Generally speaking, economic growth will inevitably lead to the increase of travel demand and vehicle population, which in turn results into the augmentation of environmental and social costs. For metropolis like Beijing under rapid development, there exist various possibilities and options for transport development policy instruments. But there is no guarantee that they will be suitable for Beijing, although they are effective in their local places. This article assesses what kind of policy can most effectively improve the traffic conditions in Beijing in the future. After literature reviews on the practices of foreign policy and we established several feasible scenarios. Then, we used the Long Range Energy Alternatives Planning System (LREAP) analyzed their corresponding results of reduced energy consumption and emissions. Finally, by simulating and computing the realistic Beijing transportation scenarios, this paper scientifically assesses what kind of policy can most effectively improve the traffic condition in Beijing in the coming decade.  相似文献   

12.
Current international discussions on the increasingly critical levels of carbon emissions from the transportation sector commonly attribute the causality chain to urban sprawl growth–private car use–carbon emission. An often assumed development context of this causality chain is that common of developed country urbanization. However, in the particular context of developing country urbanization, urban sprawl and associated workplace–home distanciation may lead to more intensive use by the urban workforce of public mass transportation system, instead of higher dependence on private vehicle travel. Thus, the source of the rise in carbon emission may actually be the public transportation system. Utilizing mixed methods, combining quantitative (origin–destination matrices) and qualitative data gathering and analysis, the authors present a case study in Metro Manila which has been experiencing sprawl and increasing costs and unaffordability of land and housing in the workforce’s vicinity of employment. This, in turn, causes greater distances of daily travel between home and workplace using public transportation system. When the latter is characterized by fuel-inefficient small vehicles with second-hand engines, higher carbon emission results. We argue that the convergence of multiple interacting factors such as urban sprawl, lack of affordability of housing near the centres of employment, high dependence of commuters on public transports, longer distance travel by commuters, and low fuel efficiency of the public utility vehicles primarily causes the increase in CO2 emission from the transport sector. Implications of this case to policy scoping of immediate and long-term state responses for carbon emission mitigation in transportation sector are discussed.  相似文献   

13.
中国城市化进程中的城市道路交通碳排放研究   总被引:7,自引:0,他引:7  
探讨了中国城市化、经济发展、技术进步等与城市道路交通碳排放之间的长期均衡关系与动态作用机制,并对中国城市道路交通碳排放进行了预测和情景分析。结果表明:①城市化率、交通能源强度、城市居民消费水平和人均GDP对城市道路交通碳排放的长期均衡弹性分别为0.93、0.73、0.68、0.44;②城市道路交通碳排放的最大贡献者在中短期内是交通能源强度,长期内是城市化率;③人均GDP增长率的提高,短期内会促使城市道路交通碳排放增长率提高,而长期又有助于使之降低;④中国城市道路交通碳排放持续增长的趋势在相当长时期内不可避免;⑤不同的发展理念和政策与技术的组合,可以使城市道路交通碳排放发生重大变化。基于研究,提出了中国城市道路交通碳减排的政策取向。  相似文献   

14.
BackgroundExposure to traffic noise and air pollution have both been associated with cardiovascular disease, though the mechanisms behind are not yet clear.ObjectivesWe aimed to investigate whether the two exposures were associated with levels of cholesterol in a cross-sectional design.MethodsIn 1993–1997, 39,863 participants aged 50–64 year and living in the Greater Copenhagen area were enrolled in a population-based cohort study. For each participant, non-fasting total cholesterol was determined in whole blood samples on the day of enrolment. Residential addresses 5-years preceding enrolment were identified in a national register and road traffic noise (Lden) were modeled for all addresses. For air pollution, nitrogen dioxide (NO2) was modeled at all addresses using a dispersion model and PM2.5 was modeled at all enrolment addresses using a land-use regression model. Analyses were done using linear regression with adjustment for potential confounders as well as mutual adjustment for the three exposures.ResultsBaseline residential exposure to the interquartile range of road traffic noise, NO2 and PM2.5 was associated with a 0.58 mg/dl (95% confidence interval: − 0.09; 1.25), a 0.68 mg/dl (0.22; 1.16) and a 0.78 mg/dl (0.22; 1.34) higher level of total cholesterol in single pollutant models, respectively. In two pollutant models with adjustment for noise in air pollution models and vice versa, the association between air pollution and cholesterol remained for both air pollution variables (NO2: 0.72 (0.11; 1.34); PM2.5: 0.70 (0.12; 1.28) mg/dl), whereas there was no association for noise (− 0.08 mg/dl). In three-pollutant models (NO2, PM2.5 and road traffic noise), estimates for NO2 and PM2.5 were slightly diminished (NO2: 0.58 (− 0.05; 1.22); PM2.5: 0.57 (− 0.02; 1.17) mg/dl).ConclusionsAir pollution and possibly also road traffic noise may be associated with slightly higher levels of cholesterol, though associations for the two exposures were difficult to separate.  相似文献   

15.
Recognition has grown among policy-makers that early in the decision-making process, there is a need for an environmental assessment of the effects of the policy, plan, and program (PPP) and their alternatives. Strategic environmental assessment (SEA) is widely recognized as a supporting tool that systematically integrates environmental aspects into strategic decision-making processes, thereby contributing to sustainable development. In this study, SEA was applied for an integrated assessment of environmental, social, and economic impacts of a wide range of scenarios for transport-related air quality policies to help decision-makers in identifying the most sustainable scenario with the purpose of reducing carbon monoxide (CO) concentrations from transport emissions in Hanoi City, Vietnam. In conducting SEA process, the urban air dispersion model MUAIR was used as a quantitative tool in prediction of CO concentrations. To evaluate the predicted impacts of scenarios, the SEA objectives concerning sustainability and the corresponding sustainable indicators were identified. Based on the likely significant predicted impacts on landscape, biodiversity, and health benefits, mitigation measures were proposed. These included planning in infrastructure development and implementation of public education campaign. The results of predicted and evaluated impacts of scenarios as well as proposed mitigation measures were taken into account for supporting sound decision-making that is consistent with the principles of sustainable development. Considering sustainable impacts of the scenarios, the SEA result clearly indicates that a combination of policy for public transport development and policy for installation of oxidation catalytic converter for motorcycles is the most sustainable scenario for reducing CO concentrations from transport emissions.  相似文献   

16.
Cooking and heating with solid fuels (wood, charcoal, crop waste, dung, coal etc) generates high levels health damaging pollutants in the home. This study is designed to test whether easy availability of cheap harmful fuels, income stratificatiom within society and awareness regarding negative health impact, causes tuberculosis and asthma, among adult married female respondents, along with profiles of their fuel selection. An empirical exercise, by applying binary logistic model and multivariate regression model, has been carried out using Third National Family Health Survey data conducted in India during 2005–2006. The results of binary logistic model indicate that with easy availability of biomass fuels, respondents are more prone to their usage. Therefore, availability/supply of least polluting cooking fuel may be ensured in reducing the level of IAP to eradicate IAP-related disease affecting most adversely the women. So easy availability and low cost of cleaner cooking fuel should get the priority in the policy criteria of the government.  相似文献   

17.
Monitoring was carried out of particulate concentrations whilst simultaneously walking and driving 48 routes in London, UK. Monitoring was undertaken during May and June 2005. Route lengths ranged from 601 to 1351 m, and most routes were travelled in both directions. Individual journey times ranged from 1.5 to 15 min by car (average 3.7 min) and 7.3 to 30 min (average 12.8 min) whilst walking; car trips were therefore repeated up to 5 times for each single walking trip and the results averaged for the route. Car trips were made with windows closed and the ventilation system on a moderate setting. Results show that mean exposures while walking are greatly in excess of those while driving, by a factor 4.7 for the coarse particle mass (PM10-PM2.5), 2.2 for the fine particle mass (PM2.5-PM1), 1.9 for the very fine particle mass (相似文献   

18.
This paper outlines an air pollution study carried out on Dublin city's recently completed boardwalk along the side of and overhanging the River Liffey. Air quality samples were taken along the length of the boardwalk to investigate whether pedestrians using the boardwalk would have a lower air pollution exposure than those using the adjoining footpath along the road. The results of the study show significant reductions in pedestrian exposure to both traffic derived particulates and hydrocarbons along the boardwalk as opposed to the footpath. Computational fluid dynamics was also used to model the outcome of these field measurements and shows the importance of the boundary wall between the footpath and boardwalk in reducing air pollution exposure for the pedestrian, the results of which are also presented herein.  相似文献   

19.
A model specifically designed for Ireland was used to measure CO(2)e emissions (CO(2), CH(4) and N(2)O) from Irish households for the first time. A total of 103 Irish households with occupancy rates varying between 1 and 6 (mean 2.9) were surveyed. The average annual household emission was found to be 16.55 t CO(2)e y(-1), which is equivalent to an average personal emission of 5.70 t CO(2)e Ca(-1) y(-1) comprising 42.2% related to home energy use, 35.1% to transport, 20.6% to air travel and other fuel intensive leisure activities, and just 2.1% associated with household waste disposal. Air travel accounts for an average personal emission of 1.152 t CO(2)e Ca(-1) y(-1), although this is highest in single and two person households at 1.693 and 2.227 t CO(2)e Ca(-1) y(-1) respectively. Household energy consumption becomes more efficient when occupancy rate increases. The most energy efficient homes in the survey were terraced with a natural gas heating systems. The least efficient were detached house with oil fuelled heating system.  相似文献   

20.
In Ireland, several studies have monitored the air pollution due to traffic in both urban and rural environments. However, few studies have attempted to quantify the relative exposure to traffic derived HC pollutants between different modes of commuter transport. In this study, the difference in pollution exposure between bus and cycling commuters on a route in Dublin was compared by sampling for five vehicle related hydrocarbons: benzene, 1,3-butadiene, acetylene, ethane and ethylene. Samples were collected during both morning and afternoon rush hour periods using a fixed speed pump to gain representative concentrations across the whole journey. Journey times were also measured, as were typical breathing rates in order to calculate the overall dose of pollutant inhaled on the journey. Results clearly picked up significantly higher pollutant concentrations in the bus compared to cycling and also revealed elevated concentrations on the congested side of the road compared to the side moving against the traffic. However, when respiration rates and travel times were taken into account to reveal the mass of pollutants inhaled over the course of a journey, the pattern was reversed, showing slightly enhanced levels of hydrocarbons for the cyclist compared to the bus passenger. In addition, the concentrations of these compounds (excluding ethane), were ascertained at playing pitches in the vicinity of a heavily trafficked suburban motorway and in Dublin city centre. Although the concentrations were relatively low at all sites, when breathing rates were taken into consideration, the average inhaled weights of pollutants were, on occasion, higher than those average values observed for both bus and bicycle commuters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号