首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complex approach in characterisation of submarine groundwater discharge (SGD) off south-eastern Sicily comprising applications of radioactive and non-radioactive tracers, direct seepage measurements, geophysical surveys and a numerical modelling is presented. SGD fluxes in the Donnalucata boat basin were estimated by direct seepage measurements to be from 4 to 12Ls(-1), which are comparable with the total SGD flux in the basin of 17Ls(-1) obtained from radon measurements. The integrated SGD flux over the Donnalucata coast estimated on the basis of Ra isotopes was around 60m(3)s(-1) per km of the coast. Spatial variations of SGD were observed in the Donnalucata boat basin, the average (222)Rn activity concentration in seawater varied from approximately 0.1kBqm(-3) to 3.7kBqm(-3) showing an inverse relationship with salinity. The continuous monitoring carried out at the site closest to the coast has revealed an inverse relationship of (222)Rn activity concentration on the tide. The (222)Rn concentrations in seawater varied from 2.3kBqm(-3) during high tides to 4.8kBqm(-3) during low tides, thus confirming an influence of the tide on submarine groundwater discharge. Stable isotopes (delta(2)H and delta(18)O) showed that SGD samples consist up to 50% of groundwater. Geo-electrical measurements showed a spatial variability of the salt/fresh water interface and its complex transformation in the coastal zone. The presented results imply that in the studied Donnalucata site there are at least two different sources of SGD, one superficial, represented by mixed fresh water and seawater, and the second one which originates in a deeper limestone aquifer.  相似文献   

2.
Submarine groundwater discharge (SGD) into the coastal zone has received increased attention in the last few years as it is now recognized that this process represents an important pathway for material transport. Assessing these material fluxes is difficult, as there is no simple means to gauge the water flux. To meet this challenge, we have explored the use of a continuous radon monitor to measure radon concentrations in coastal zone waters over time periods from hours to days. Changes in the radon inventories over time can be converted to fluxes after one makes allowances for tidal effects, losses to the atmosphere, and mixing with offshore waters. If one assumes that advective flow of radon-enriched groundwater (pore waters) represent the main input of 222Rn in the coastal zone, the calculated radon fluxes may be converted to water fluxes by dividing by the estimated or measured 222Rn pore water activity. We have also used short-lived radium isotopes (223Ra and 224Ra) to assess mixing between near-shore and offshore waters in the manner pioneered by. During an experiment in the coastal Gulf of Mexico, we showed that the mixing loss derived from the 223Ra gradient agreed very favorably to the estimated range based on the calculated radon fluxes. This allowed an independent constraint on the mixing loss of radon-an important parameter in the mass balance approach. Groundwater discharge was also estimated independently by the radium isotopic approach and was within a factor of two of that determined by the continuous radon measurements and an automated seepage meter deployed at the same site.  相似文献   

3.
Ra isotopes are a powerful tool for quantifying the flux of submarine groundwater discharge (SGD) into the sea. Previous studies of 223Ra and 224Ra mass balances in coastal embayments have shown that the Ra balance is dominated by supply via SGD, exchange with the open ocean and radioactive decay. The current study shows that a single time series over a tidal cycle at the principal inlet to Great South Bay (NY, US) is sufficient to determine the net flux of Ra across the inlet, and also can be used to estimate the decay of short-lived Ra in the bay. Estimates of the net Ra flux obtained from a single tidal time-series by using three different approaches agree with those determined from a more time-consuming survey of Ra within the bay, and may represent a first step of estimating SGD in bays and coastal lagoons.  相似文献   

4.
Submarine groundwater discharge (SGD), which includes fresh groundwater and recycled seawater, has been recognized as a widespread phenomenon that can provide important chemical elements to the ocean. Several studies have demonstrated that SGD may approach or even exceed freshwater sources in supplying nutrients to coastal zones. This work reports preliminary results of a study carried out in a series of small embayments of Ubatuba, S?o Paulo State, Brazil, covering latitudes between 23 degrees 26'S and 23 degrees 46'S and longitudes between 45 degrees 02'W and 45 degrees 11'W. The main aims of this research were to set up an analytical method to assess 222Rn and 226Ra activities in seawater samples and to apply the excess 222Rn inventories obtained to estimate SGD. Measurements made during the summer of 2001 included 222Rn and 226Ra in seawater, 226Ra in sediment, seawater and sediment physical properties, nutrients and seepage rates. A continuous 222Rn monitor was also used to determine in situ collection of data to study short-term changes at one location. All methods indicated significant inflow of subsurface fluids at rates in excess of several cm per day.  相似文献   

5.
The radon isotope 222Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected. These included riverine fluxes, terrestrially-derived fresh submarine groundwater discharge (SGD) and the tidal pumping of seawater through mangrove forests. Based on variations in the relationship of the tracers radon and salinity, some aspects of regional freshwater inputs to the coastal zone and to estuaries could be assessed. Concurrent mapping of radon and salinity allowed an efficient qualitative assessment of land-ocean interaction on various spatial and temporal scales, indicating that such surveys on coastal scales can be a useful tool to obtain an overview of SGD locations and processes.  相似文献   

6.
The four naturally-occurring isotopes of radium were coupled with a previously evaluated hydrodynamic model to determine the apparent age of surface waters and to quantify submarine groundwater discharge (SGD) into the Venice Lagoon, Italy.Mean apparent age of water in the Venice Lagoon was calculated using the ratio of 224Ra to 228Ra determined from 30 monitoring stations and a mean pore water endmember. Average apparent age was calculated to be 6.0 d using Ra ratios. This calculated age was very similar to average residence time calculated for the same period using a hydrodynamic model (5.8 d).A mass balance of Ra was accomplished by quantifying each of the sources and sinks of Ra in the lagoon, with the unknown variable being attributed to SGD. Total SGD were calculated to be 4.1 ± 1.5, 3.8 ± 0.7, 3.0 ± 1.3, and 3.5 ± 1.0 × 1010 L d−1 for 223,224,226, 228Ra, respectively, which are an order of magnitude larger than total mean fluvial discharge into the Venice Lagoon (3.1 × 109 L d−1). The SGD as a source of nutrients in the Venice Lagoon is also discussed and, though significant to the nutrient budget, is likely to be less important as the dominant control on SGD is recirculated seawater rather than freshwater.  相似文献   

7.
Results of groundwater and seawater analyses for radioactive ((3)H, (222)Rn, (223)Ra, (224)Ra, (226)Ra, and (228)Ra) and stable (D and (18)O) isotopes are presented together with in situ spatial mapping and time series (222)Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0cmd(-1) to 360cmd(-1); the unit represents cm(3)/cm(2)/day), as well as during a few hours (from 0cmd(-1) to 110cmd(-1)), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous (222)Rn measurements is 17+/-10cmd(-1). Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7x10(3)m(3)d(-1) per km of the coast. The isotopic composition (deltaD and delta(18)O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of (222)Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1-2 weeks for water within 25km offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential environmental concern and has implications on the management of freshwater resources in the region.  相似文献   

8.
Results of groundwater and seawater analyses for radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, and 228Ra) and stable (D and 18O) isotopes are presented together with in situ spatial mapping and time series 222Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0 cm d−1 to 360 cm d−1; the unit represents cm3/cm2/day), as well as during a few hours (from 0 cm d−1 to 110 cm d−1), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous 222Rn measurements is 17 ± 10 cm d−1. Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7 × 103 m3 d−1 per km of the coast. The isotopic composition (δD and δ18O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of 222Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1–2 weeks for water within 25 km offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential environmental concern and has implications on the management of freshwater resources in the region.  相似文献   

9.
We have developed a simple and portable technique for measuring moderately high levels of 222Rn (t1/2=3.8d) in natural waters such as coastal water, groundwater, and river water. The water sample is carefully collected in a glass bottle, and the sample bottle is connected to a radon-in-air monitor in a closed air-loop mode. By purging air through the sample, radon is emanated from the water until a chemical equilibration is obtained between the two phases. The radon in the air loop is determined using the radon-in-air monitor. Then, the radon in water is calculated by a radon-partitioning factor between water and air for a measured water temperature. This technique is especially convenient for determination of 222Rn in natural waters on field sites, since it eliminates the preparation of He gas, cold traps, and alpha-scintillation cells and counter, which are required for traditional radon emanation methods.  相似文献   

10.
A radon survey has been carried out around the town of Niska Banja (Serbia) in a region partly located over travertine formations, showing an enhanced level of natural radioactivity. Outdoor and indoor radon concentrations were measured seasonally over the whole year, using CR-39 diffusion type radon detectors. Outdoor measurements were performed at 56 points distributed over both travertine and alluvium sediment formations. Indoor radon concentrations were measured in 102 living rooms and bedrooms of 65 family houses. In about 50% of all measurement sites, radon concentration was measured over each season separately, making it possible to estimate seasonal variations, which were then used to correct values measured over different periods, and to estimate annual values. The average annual indoor radon concentration was estimated at over 1500 Bq/m3 and at about 650 Bq/m3 in parts of Niska Banja located over travertine and alluvium sediment formations, respectively, with maximum values exceeding 6000 Bq/m3. The average value of outdoor annual radon concentration was 57 Bq/m3, with a maximum value of 168 Bq/m3. The high values of indoor and outdoor radon concentrations found at Niska Banja make this region a high natural background radiation area. Statistical analysis of our data confirms that the level of indoor radon concentration depends primarily on the underlying soil and building characteristics.  相似文献   

11.
Monitoring of chemical and physical groundwater parameters has been carried out worldwide in seismogenic areas with the aim to test possible correlations between their spatial and temporal variations and strain processes. Uranium (U) groundwater anomalies were observed during the preparation phases of the recent L'Aquila earthquake of 6th April 2009 in the cataclastic rocks near the overthrust fault crossing the deep underground Gran Sasso National Laboratory. The results suggest that U may be used as a potential strain indicator of geodynamic processes occurring before the seismic swarm and the main earthquake shock. Moreover, this justifies the different radon patterns before and after the main shock: the radon releases during and after the earthquake are much than more during the preparatory period because the process does not include only the microfracturing induced by stress-strain activation, but also radon increases accompanying groundwater U anomalies.  相似文献   

12.
黄浦江上游地区水环境污染负荷特征   总被引:1,自引:0,他引:1  
通过调查黄浦江上游地区的水环境污染来源、污染负荷及其特征,为管理部门控制污染、提高上游地区水环境质量提供科学依据。调查中了解到污染源种类主要有4类:工业、事业、生活和畜禽污染源;水源保护区内年用水量为22196万t.污水量为17755万t/a,其中工业污染源352个,排放量占46.3%,事业污染源4108个。排放量占22.3%,生活污水排放量占30.6%.畜禽污水排放量占0.8%;黄浦江上游水源保护区污染源排放去向主要分4种:直排河道(占40.4%),进入市政泵站后排出(占3.9%)。经污水处理厂处理后排出(占20.5%),通过合流污水收集系统排出(占35.3%)。根据黄浦江上游地区水环境污染负荷特征,建议黄浦江上游区域进一步调整和完善不同区域的功能定位,优化产业结构和布局,构建利于水源保护的区域发展模式和格局;通过采取污染控制和生态环境建设并重的一系列措施,有效抑制生态环境恶化趋势,促进黄浦江上游上游水环境质量的改善。确保上海市的饮用水安全。  相似文献   

13.
The assembling of a system for field sampling and activity concentration measurement of radon dissolved in groundwater is described. Special attention is given in presenting the calibration procedure to obtain the radon activity concentration in groundwater from the raw counting rate registered in a portable scintillation detector and in establishing the precision of the activity concentration measurements. A field procedure was established and the system tested during one year of monthly observations of 222Rn activity concentration in groundwater drawn from two wells drilled on metamorphic rocks exposed at Eastern São Paulo State, Brazil. The observed mean 222Rn activity concentrations are 374 Bq/dm3 in one well and about 1275 Bq/dm3 in the other one. In both wells the 222Rn activity concentrations showed a seasonal variation similar to variations previously reported in the literature for the same region.  相似文献   

14.
In solar rockbed storage systems, heat is transferred during the day from the collector to a bed of pebbles, and released at night to warm the living space. When the rocks used for storage contain significant concentrations of uranium, 222Rn and its daughters may be released to the living area. A microcomputer model was used to simulate variations in air filtration rate and source strength through several days of operation. Source strengths were estimated from theoretical considerations and literature data. Resulting 222Rn and daughter concentrations were computed by solving system equations by fourth-order Runge-Kutta integration. During the day, when the living space is isolated from the radon source, interior 222Rn concentrations approach those of the outdoors. A nighttime steady-state concentration is approached about 6 h after heat discharge begins. Due to the dynamic nature of the simulation, equilibrium between 222Rn and its daughters is not reached. Time-weighted average nighttime exposures (6 p.m.–8 a.m.) for 10 simulation runs varied from 0.001 to 0.018 working level (WL). Comparison with one set of measurement data showed the model to overpredict concentrations but to approximate the 222Rn buildup rate well. Combinations of source strength, infiltration rate, and exterior radon concentration which would lead to exposures exceeding 0.02 WL were calculated.  相似文献   

15.
In this paper, we present the first measurement of radon concentrations in drinking groundwater from private and public deep-bored wells located in the south-eastern area of Korea. The measurements were carried out on 439 samples by using a liquid scintillation method. The results show that the radon concentrations of the samples range from 0 to about 300 Bq l(-1). We find that Sasang ward shows the highest median value of radon concentration among 13 different wards, while Jung ward has the lowest. We find that the radon concentrations are highly dependent on the type of geological rock aquifers.  相似文献   

16.
This study employed the Geographical Information System (GIS) technology to investigate nitrate contamination of groundwater by agrochemical fertilizers in the Kakamigahara Heights, Gifu Prefecture, central Japan. Thematic information and chemical data of groundwater from the Heights were analyzed in a GIS environment to study the extent and variation of nitrate contamination and to establish spatial relationships with responsible land use types. The high and correlated concentrations of Ca(2+), Mg(2+), SO(4)(2-), and NO(3)(-) reflected the polluted nature of the unconfined highly permeable Kakamigahara aquifer. Ninety percent of the water samples showed nitrate concentrations above the human affected value (3 mg/l NO(3)(-)), while more than 30% have exceeded the maximum acceptable level (44 mg/l NO(3)(-)) according to Japan regulations. The spatial analyses indicated that groundwater contamination by nitrate is closely associated with one specific land use class, the "vegetable fields". The nitrate concentration of groundwater under vegetable fields was significantly higher than that under urban land or paddy fields. Most of the unacceptable nitrate levels were encountered in boreholes assigned to "vegetable fields" but a few were also found in boreholes allotted to "urban" class. Therefore, the vegetable fields were considered the principal source of nitrate contamination of groundwater in the Kakamigahara. However, contamination from urban sources is also possible.  相似文献   

17.
利用苏州河及其支流的水文水质调查资料综合分析苏州河水系控制和污染源分布特点 ,指出苏州河的支流污水汇入是苏州河污染的主要原因。在此基础上 ,建立苏州河水系一维非恒定流河网水动力学模型与一维河网动态水质模型 ,对苏州河七条支流建闸控制工程后的水环境影响进行计算、分析与评价 ,预测建闸后对黄浦江各水厂的水质变化和苏州河、蕴藻浜以及七条支流的水质变化。预测结果 :七条支流建闸后 ,苏州河及其支流的水质有所改善 ,污水在苏州河内回荡有所减轻 ,排向黄浦江的速度加快。另外 ,污水从蕴藻浜排向黄浦江 ,缩短了污水在黄浦江输移的距离 ,黄浦江沿岸的水厂水质大大改善 ,污水在黄浦江内回荡的时间也有所减少 ,但是七条支流及蕴藻浜的水体污染会加重。根据预测结果 ,提出水资源调度方案、解决七条支流及蕴藻浜水污染加重的对策措施  相似文献   

18.
目前,我国有关农村居民生活用水的系统研究相当缺乏。对地处上海市浦东快速城市化区域的8个村庄进行随机入户调查。在对调查数据进行整理和统计分析的基础上,系统研究当地农民的生活用水行为和影响因素。研究表明:(1)被访农民普遍认为自来水价格过高。家庭收入水平是决定被访农民对水价态度的主要影响因素。(2)自来水价格主要对农户的洗衣行为产生显著影响。认为自来水价格高的农户更倾向于用井水洗衣。(3)影响农户自来水用水量的显著变量包括:农户家庭常住人口、自来水价格、洗衣水源和洗澡方式。(4)被访农民普遍具有节水意识,但大都局限于“节约使用自来水,减少自来水水费”这个层面。提高农民的水污染控制和水资源保护意识,正确引导其井水抽取和生活污水排放行为,促进农村污水收集和治理项目的普及和正常运行,以及完善地下水资源的保护和管理机制是现阶段当地保障农村生活用水安全的工作重点  相似文献   

19.
In ten high radon level kindergartens, radon sources were sought by applying a combination of several radon measuring techniques: etched track detectors to obtain average indoor air radon concentration, continuous devices to record radon concentration and see its diurnal variation, and alpha scintillation cells to determine radon concentration in the air entering a room from cracks, holes and sinks in the floor and from under-floor channels. In three cases, a strong local radon source was identified while, in the others, the bad quality of the basic concrete slab was responsible for the high indoor radon concentration.  相似文献   

20.
在4次地下水水质监测的基础上,对潜水和浅层承压水的“三氮”含量进行了季节变化和空间差异分析,同时探讨了时空变化的影响因素。分析结果表明:(1)地下水氨氮浓度超标率较高,承压水中浓度明显高于潜水,4次采样结果承压水氨氮浓度超标率均在50% 以上;(2)硝酸盐氮和亚硝酸盐氮含量在承压水中能达到良好的标准,在潜水中超标率高;(3)氨氮浓度季节变化明显,9月份浓度显著高于4、6和11月。硝酸盐氮和亚硝酸盐氮在潜水中6月份浓度最高,在承压水中季节变化不明显;(4)地下水氨氮含量空间变异性强,浓度较高的多集中在流经洪湖的内荆河两侧区域。研究区地下水水质受气象因素、农业活动、农村生活污染以及氧化还原环境的综合影响  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号