首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
梯级开发对河流径流过程和水温过程均化作用的研究   总被引:4,自引:0,他引:4  
长江中上游干流及主要支流正在大规模地进行水电开发,随着这些梯级水库群的建设,自然河流中具有重要生态意义的流量过程和水热过程发生变化,导致流量和水温均化,引起了一些河流生态环境问题。根据现有资料统计,结合金沙江下游正在建设的溪洛渡和向家坝水电站,对比分析了梯级水电工程径流调节后与天然过程的差异程度,探讨了河流径流过程和水温过程均化现象对生境的影响。将均化系数λ引入,定量计算了水库调节对天然径流的均化作用;采用宽度平均的立面二维k-ε水温模型,初步分析了梯级水电工程对水温过程均化作用。最后提出减小梯级水库对长江生态环境影响的对策和建议.  相似文献   

2.
赣江是鄱阳湖流域最大水系,赣江水沙变化对鄱阳湖入湖径流、泥沙等水文特征有重要影响。目前对赣江水沙研究主要集中在下游外洲站河段,不足以反映全流域水沙变化规律。选取赣江上游4站、吉安和外洲水文站分别代表上、中、下游河段,基于近60 a的实测流量、悬移质泥沙资料,采用水文学和数理统计相结合的方法,分析赣江水沙年际变化特征以及可能影响因素,以期为流域水沙资源管理提供参考。结果表明:(1)赣江径流年际变化大,1970s、1990s水量较丰,其它年代径流偏少,年径流序列无显著变化趋势和突变点;(2)输沙量年际变化剧烈,呈显著降低趋势,上游4站、吉安站、外洲站输沙序列突变点分别为2002年、1995年、1995年,突变后年输沙量较突变前减少52%、71%、67%;(3)赣江上游水土保持建设是上游4站输沙量减小的主要原因;1993年后万安水库拦沙是吉安、外洲站输沙量显著减少的主要原因,水土保持、河道采砂也是引起吉安、外洲站输沙量减少的直接因素。(4)水土保持减沙的作用是缓慢和滞后的,而万安水库对下游河道的减沙作用是迅速而显著的。可见,赣江入鄱阳湖的年径流无明显减少趋势,入湖输沙量显著减少,有利于减少鄱阳湖的泥沙淤积、促进湖泊生态的良性发展。  相似文献   

3.
通过对长江干支流各主要水文控制站的多年径流量、输沙量、含沙量、中值粒径等水沙基本特征值的统计分析,表明在过去的近50年时间内,长江干支流的年径流量中心趋势不存在具有显著统计意义的变化,而输沙量、含沙量、中值粒径值均有明显的下降态势。以水库建设和水土保持为主的人类活动是长江干支流泥沙输移量减少趋势的重要影响因素,在20世纪90年代以前长江输沙量的减少主要是水库建设的影响,之后随着“长治”工程的展开则兼具了水库建设和水土保持的影响,未来水土保持工作对长江保水减沙的长期效益将更为显著。  相似文献   

4.
1950年以来鄱阳湖流域水沙变化规律及影响因素分析   总被引:1,自引:0,他引:1  
运用Mann-Kendall趋势检验法和回归分析等方法,对鄱阳湖流域赣江外洲站、抚河李家渡站、信江梅港站、饶河虎山站和修水万家埠站1950~2012年径流量和1956~2012年输沙量的变化进行了系统分析,并探讨了水沙变化的原因。研究结果表明:(1)鄱阳湖流域五大河流水沙的趋势变化特征相异,除李家渡站径流无明显趋势变化外,其余各站均呈不显著的增加趋势(未超过α=0.05显著性检验临界值);外洲站、梅港站和李家渡站输沙量呈减少的趋势变化,且1985年以后呈显著的减少趋势,而虎山站和万家埠站输沙量在1965~1999年呈不显著的增加趋势,1999年以后才开始减少;(2)入湖总水量呈不显著的增加趋势,发生突变的年份为1992年;入湖总沙量呈显著的减少趋势,发生突变的年份为1996年,入湖总沙量突变滞后于入湖总水量;(3)流域径流量变化主要受降雨量的影响,而输沙量变化主要受水土保持和水库建设等人类活动的影响,且水库拦沙是鄱阳湖流域输沙量减少的主要原因。  相似文献   

5.
1956~2011年鄱阳湖水沙特征及其变化规律分析   总被引:1,自引:0,他引:1  
近年来,鄱阳湖水沙研究集中在鄱阳湖"五河"各水文站的单站分析上,且水沙数据采用大多仅至21世纪初期,对缺测资料未进行有效插补。将鄱阳湖作为一个研究整体,分析了鄱阳湖水沙特征及其变化规律,以便为鄱阳湖泊形态变化研究以及水、沙资源的合理开发利用提供有利的参考依据。运用水沙相关、上下游泥沙相关法对部分缺测泥沙进行插补,获得1956~2011年的鄱阳湖入、出湖水沙系列数据。利用数理统计法、水沙双累积曲线法、Mann-Kendall法分析鄱阳湖入、出湖径流量与输沙量变化特征,并且探讨了水沙变化的原因。结果表明:(1)入湖径流量和输沙量的年内分配相一致,而长江水沙的倒灌影响了出湖径流量和输沙量的年内分配;(2)鄱阳湖入湖悬移质泥沙从90年代开始下降趋势加剧,而出湖悬移质泥沙1956~2000年整体呈下降趋势,2001~2011年呈现上升趋势;(3)鄱阳湖入、出湖年输沙量出现明显的突变点分别在1998年左右、2003年左右;(4)径流量总体处于相对稳定状态,但近10a来径流量略下降,主要受到降水量变少的影响,入湖输沙量变化受"五河"流域的水库蓄水拦沙、流域水土保持工作加强、人类河床采砂等因素影响;而出湖河段河床深度下切、江湖水面比降加大、人类在鄱阳湖采砂扰动河(湖)床均加大了近10a来出湖悬移质泥沙的输出。  相似文献   

6.
三峡工程蓄水后荆江河段河势变化及生态护岸研究   总被引:1,自引:0,他引:1  
三峡工程蓄水以来,进入长江中下游河道的水沙过程发生明显改变,从而导致中下游河道尤其是荆江河段冲刷、崩塌,局部河段河势调整较为剧烈,并导致主流顶冲部位发生变化,可能会引起新的崩岸发生。分析了荆江河段河势变化特点,列举了各种传统护岸方法,分析了传统护岸的特点和适用性,针对传统护岸工程的不足,提出生态护岸理念,在满足整体性、稳定性、适应变形等要求下,采取工程措施与植物措施共同护岸,并为河道与河岸之间水分交换提供条件,建立了水生生态系统和陆地生态系统之间的联系,实现了河流原本完整的结构和作为生态廊道的功能,进而保证整个生态系统的稳定,有利于生态环境的保护和水土保持,实现生态理念,满足生态需要,达到人与自然和谐发展。  相似文献   

7.
针对河流入海水沙通量变化问题,以长江为研究对象,基于1950~2017年大通站及各组分实测水沙和降雨量数据,在分析入海水沙和各组分变化过程及各组分贡献比例的基础上,确定主要贡献组分,进而预测入海水沙通量的变化趋势。结果表明:(1)各组分年径流量和降雨量的多年变化均不大,使得大通站入海年径流量多年变化不大,宜昌站对入海年径流量的贡献比例为48%。(2)大通站入海流量年内分配过程逐渐坦化,其中宜昌站为主要贡献组分,洪枯季平均贡献比例分别为233.79%和80.36%;宜昌站的主要贡献作用体现了其上游梯级水库群对大通站入海流量过程的调平效应。(3)流域水库建设将使得大通站入海流量过程坦化和年径流量稳定的趋势得以维持。(4)大通站年入海沙量自1985年起显著减少,三峡水库蓄水前大通站泥沙主要来自宜昌,其贡献比例为116.04%,三峡水库蓄水后,大通站泥沙主要来自宜昌—大通区间的河床补给,其贡献比例为53.29%;水库下游河床补给逐渐减少和水库淤积平衡时间延长将使得大通站多年平均入海沙量在较长时期内(>300年)不超过1.5×108 t/a。  相似文献   

8.
长江水能资源规划开发段,从虎跳峡至葛洲坝诸梯级泥沙周转量5740×10~8t·km/a,水能蕴藏量5940×10~8kw·h/a,其中发电用水能约占2/3。长江各水库的库容,无论是与年径流量还是与年输沙量相比,大都不大。水库泥沙淤积问题,可通过多种途径解决。99%的悬移质泥沙可利用长江动力输送。合理利用水库,输沙单位能耗约为0.48-0.10kW·h/t·km,从上往下减少。卵石和部分粗沙由机械采运和水库拦截。要重视水土保持。  相似文献   

9.
长江大通站输沙量时间序列分析研究   总被引:22,自引:3,他引:19  
长江来水来沙直接影响着河口三角洲的发育过程以至入海物质通量变化。大通站作为长江河口的第一个关键界面,有近50年左右的输沙量和流量连续观测资料(1953~2001年)。利用肯德尔、有序聚类和熵谱分析等方法,着重对输沙量时间序列进行了统计分析。大通站径流量在保持稳定的情势下,输沙量在过去49年中有明显的下降。输沙量变化主要呈跳跃式下降,同时表现出16年左右周期性阶梯下降规律,1968年和1984年分别为阶梯下降的跳跃点。尤其1984年后,年均输沙量比1984年前下降26.4%,且最大值未超过1984年前的平均值。输沙量减少与人类活动密切相关。20世纪80年代末的“长江上游水土保持重点防治工程”的实施,使长江上游的来沙减少,这是大通站输沙量减少的主要原因;其次是长江流域内水利工程的拦沙作用。  相似文献   

10.
赣江上游章水流域水沙变化的驱动力分析   总被引:1,自引:0,他引:1  
为揭示赣江上游流域输沙量急剧减小过程中各影响因子的相对贡献率,以上游的章水流域为代表区域,采用流域控制站坝上水文站1956~2015年流域面雨量、径流和输沙数据,并结合趋势检验、Pettitt突变检验等方法,计算并分析了该流域多年降雨量、径流量和年输沙量的变化趋势和突变。采用累积量斜率变化率比较法分析了自然因素和人类活动在章水流域水沙关系变化中的相对贡献率。结果表明:流域降雨和径流60 a间无显著变化趋势和突变点,年输沙减少趋势显著,在1994年发生有超过显著性水平0.001的突变。相对于1956~1994年,在1995~2015年,人类活动对章水流域水沙关系的贡献率为99.4%;研究表明水利工程建设和水土保持等人类活动对赣江上游章水流域输沙量变化影响及其显著。研究对于准确评价水利工程和水土保持效益具有重要的指导意义。 关键词: 水沙关系;赣江上游流域;人类活动贡献率;双累积曲线  相似文献   

11.
近40年来长江流域水沙变化趋势及可能影响因素探讨   总被引:3,自引:0,他引:3  
利用Mann Kendall方法,分析了近40年长江流域主要水文站点(长江干流水文站:屏山站、宜昌站、汉口站与大通站;支流水文站:嘉陵江的北碚站和汉江的皇庄站)的流量及输沙率的变化特征。结果表明:①长江流域流量与输沙量变化受人类活动(土地利用、水利设施建设等)与自然因素(如降水的时空变化)综合因素影响,变化趋势表现出复杂性,上、中、下游各有特点;②长江流域屏山站以上流域输沙率有上升趋势(1~5月份上升趋势达到95%的置信度水平),这与上游河床坡度较大,使泥沙不易沉积以及暴雨与降水增加有关;③长江中下游输沙呈显著下降趋势。计算结果表明,宜昌-汉口河段是长江流域泥沙主要沉积区,加上葛州坝与三峡工程的建成与投入使用,从而进一步使中下游输沙量呈下降趋势。由于下游降水增加,使下游径流量自1980s以来有微弱上升趋势,但未达到95%的置信度水平,中上游流量变化不显著。对上、中、下游人为因素与自然因素对流域流量与输沙量的变化贡献率方面需要做进一步的研究。  相似文献   

12.
近四十年来长江源区河流水沙量的变化   总被引:6,自引:1,他引:6  
长江源区是指直门达水文站以上长江干支流的广大集水区域,是长江的重要水源涵养区。通过统计分析直门达站1957-1999年的43a间年径流量和年输沙量的变化情况,得出几个基本结论:长江源区年径流的变化主要受气候等自然因素的影响,年径流周期性变化较为明显,径流丰水年,偏丰水年出现最多的年份是20世纪60年代和80年代,枯水年和偏枯年出现最多的年份是70和90年代,总体上看40年间节径流基本稳定,但90年代比80年代有趋向偏枯的现象;年输沙量与年径流量的变化基本同步,年输沙量的变化主要取决于年径流量的变化,年输沙量也呈弱周期性变化状态,并有趋向减少的势头,近10a直门达站年径流量呈递减的趋势导致了年输沙量呈相应的变化;长江源区径流量和输沙量年内主要集中在5-10月,分别占年径流量和年输沙量的87.3%和99%;沱沱河由于径流以冰川补给为主,径流量与输沙量的变化呈现出不同的特征。  相似文献   

13.
长江口没冒沙演变过程及其对水库工程的响应   总被引:2,自引:0,他引:2  
研究南槽没冒沙演变规律,可以为筑库引淡蓄水工程建设提供科学依据。根据该海区近百年来各个时期的海图和20年来的实测水文泥沙等资料以及2003、2004年的现场观测数据,探讨了没冒沙的形成及形成后的演变过程。研究表明:没冒沙的形成和发育经历了局部边滩冲刷、边滩沙嘴发育和沙脊形成3个阶段;近半个世纪来,沙体中轴位置在稳定强劲的涨落潮流作用下呈现出西北—东南走向的良好的稳定性,具有潮流脊性质。而蓄淡水库工程建设将有可能使南槽成为适应进出水沙量的新型河槽。  相似文献   

14.
长江中下游洪水灾害成因及洪水特征模拟分析   总被引:14,自引:9,他引:5  
长江中下游地区洪水灾害的发生是自然地理条件及人类活动共同作用的结果。流域水系构造和地理特征决定了其洪水多发性,气候变化和土地利用/地表覆盖变化导致该地区水循环过程发生较大改变,而大量水库、堤防的建设以及城市化的发展使得洪水过程发生显著变化,因此在各种因素的综合作用下,长江中下游地区近年来洪水灾害频繁发生。综述了气候变化对长江中下游降水的影响,探讨了长江中下游水系特征与洪水灾害的关系,分析了人类活动对洪水灾害的影响规律,在此基础上,开展了气候和下垫面特征变化条件下的暴雨洪水模拟研究,以长江下游太湖东苕溪流域的南苕溪为研究区,进行了流域降雨径流过程的动态模拟验证和特征分析,并取得了较满意的成果,从而为长江中下游地区防洪减灾研究打下了基础。  相似文献   

15.
以长江口徐六泾断面2009年实测水沙数据为基础,分析了其水沙特征,重点研究了三峡蓄水及长江流域旱情对徐六泾节点径流、潮位和泥沙过程的影响。结果表明:观测期间寸滩站以上流域来水减少、三峡蓄水和中下游干旱共同导致进入河口的径流量减少,各自造成的影响权重分别为38%、13%和49%。与蓄水前相比,蓄水期间徐六泾涨潮历时增加05 h,落潮历时减少05 h,潮差增大约04 m;涨潮平均流速增加35%~126%,落潮平均流速浅滩处基本不变,而深槽处减幅约为22%;蓄水期间涨落潮历时、流速流向等特征由不对称趋于较对称,说明徐六泾的水动力特征对径流减少的响应敏感。伴随径流减少,徐六泾含沙量由蓄水前的0129 kg/m3大幅下降至蓄水期间的0052 3 kg/m3,悬沙中值粒径则由3 μm增大到5 μm。综合得知进入河口徐六泾断面的水沙过程受到流域人类活动和自然条件改变的双重影响  相似文献   

16.
长江中下游岸线利用对防洪累积影响初步研究   总被引:4,自引:0,他引:4  
在分析长江中下游岸线开发利用现状及存在问题基础上,分别选取武汉河段和扬中河段作为代表性河段,针对桥梁群和码头群两类主要岸线开发利用形式,开展了涉河工程群对河道洪水位及流场累积影响的数学模型计算分析。计算结果表明,群体工程共同作用后将引起河道洪水位和流场的叠加影响,其影响值及影响范围远大于单个工程,当群体工程的影响积累到一定程度,可能对河道的行洪与河势稳定带来不利影响。建议桥梁群应保持合理的密度,码头群应合理控制港区规模,上下游港区间应保持合理的距离,在岸线开发过程中应制定岸线利用规划,规范涉河工程设计,以尽可能减小对防洪的累积影响  相似文献   

17.
大通水文站和泥沙观测断面位于长江河口的上边界。长江下游从大通(潮区界)至长江口门的距离长达680 km。20世纪80年代以来,长江流域日趋强烈的人类活动,显著改变了长江入海水文和泥沙数量和特性,从而对长江下游至河口动力地貌和动力沉积产生了显著影响。主要研究长江潮区界大通断面20世纪50年代以来床沙粒径的长期变化。1977~2004年床沙粒径 (〖WTBX〗d〖WTBZ〗50) 有一稳定增大的趋势,这主要是对上游河道悬沙来量持续减少的响应。值得注意的是床沙粗化过程是发生在该河床长期加积的背景上的。研究表明:导致床沙粒径粗化的原因,主要是上游河段进入本河段床沙粒径的增加和本河段冲淤过程中悬沙与床沙颗粒的交换。随着三峡水库的正常运行和其它大型水库的建设,预计未来几十年长江上游悬沙来量将进一步大幅度下降,可以预计,长江潮区界河段的床沙粒径将继续呈现增大的趋势。〖  相似文献   

18.
2003~2017年以三峡水库为核心的长江上游水库群运行和联合调度从宏观上改变上游河流泥沙时空分布规律,金沙江已不是三峡入库泥沙最大供沙区;长江上游水沙输运集中在汛期5~10月,1956~2002年水沙峰值基本同步,而三峡水库蓄水后2003~2017年水沙峰值不同步,流量特性曲线由顺时针转为逆时针,出现滞后现象。入库泥沙锐减后并未降低三峡库区细颗粒泥沙淤积率,2014~2017年汛期5~10月淤积率增加至85.2%,其中d0.031 mm的极易发生絮凝的泥沙所占比例最高(63.5%,2009~2013年),典型河段现场观测到大量泥沙絮团,所以三峡库区极可能存在细颗粒泥沙絮凝。入库水沙不平衡也使得朱沱-清溪场河段出现泥沙冲刷。  相似文献   

19.
三峡工程对下荆江径流变化影响分析   总被引:1,自引:0,他引:1  
下荆江作为长江最不稳定的江段之一,三峡工程的运行必然会对该江段的水文过程产生深远影响。以监利水文站日均流量数据为基础,研究分析了1983~2012年近30 a来下荆江年径流量、各月月均流量的变化趋势。结合三峡工程的阶段性蓄水,以蓄水前流量的自然波动幅度为基础,定量分析了三峡工程对下荆江径流变化的影响程度。趋势性分析结果显示,近30 a来下荆江年径流量呈波动性变化,无显著趋势。1~3月月均流量有极显著的增加趋势,10月份有极显著的下降趋势。从三峡工程蓄水前后各月份月均流量的绝对变化量来看,10、7和8月的变化量最大,但结合三峡工程蓄水前各月月均流量的自然波动幅度,相对变化率最大的月份为1、2和10月,其相对变化量均超过其自然波动幅度的1.5倍。对于相对变化量较大的月份可能产生的潜在影响亟需进一步的深入研究  相似文献   

20.
基于MODIS的长江中游河段悬浮泥沙浓度反演   总被引:1,自引:0,他引:1  
监测和预报悬浮泥沙浓度的沿程分布和时间变化,无论是对于河流水利工程还是河流生态和环境保护都具有重要意义。卫星遥感反演同步性好、速度快、周期短,可以实时和全面地观测大尺度悬浮泥沙分布。旨在建立基于中分辨率成像光谱仪(MODIS)影像的长江中游河段悬浮泥沙浓度反演模型, 并利用建立的模型反演2002~2009 年长江中游河段丰水期的悬浮泥沙浓度, 分析其在时间和空间上的变化特征。研究揭示,MODIS Terra 影像红波段与悬浮泥沙浓度具有显著的相关性(R2=0877,n=125,RMSE=4057 mg/L),可以用于长江中游丰水期悬浮泥沙浓度的反演。长江三峡工程经历三次蓄水,坝下游宜昌至汉口段悬浮泥沙含量显著减少,荆江河段、洞庭湖及城陵矶至武汉江段下降最为显著。洞庭湖来水来沙是长江中游城陵矶以下江段主要的悬浮泥沙来源之一,从预测结果可知,洞庭湖来水在城陵矶汇入长江后与江水混合以至形成数十公里的混合带,至洪湖以下江段逐渐混合均匀  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号