首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fine particle (aerodynamic diameter <2.5 microm) samples were collected during six intensive measurement periods from November 2001 to August 2003 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. Chemical composition of these aerosol samples including major ion components, trace elements, organic and elemental carbon (OC and EC), and particulate polycyclic aromatic hydrocarbons (PAHs) were analyzed to study the impact of long-range transport of anthropogenic aerosol. Aerosol chemical composition data were then analyzed using the positive matrix factorization (PMF) technique in order to identify the possible sources and estimate their contribution to particulate matter mass. Fourteen sources were then resolved including soil dust, fresh sea salt, transformed natural source, ammonium sulfate, ammonium nitrate, secondary organic carbon, diesel vehicle, gasoline vehicle, fuel oil combustion, biomass burning, coal combustion, municipal incineration, metallurgical emission source, and volcanic emission. The PMF analysis results of source contributions showed that the natural sources including soil dust, fresh and aged sea salt, and volcanic emission contributed to about 20% of the measured PM(2.5) mass. Other primary anthropogenic sources such as diesel and gasoline vehicle, coal and fuel oil combustion, biomass burning, municipal incineration, metallurgical source contributed about 34% of PM(2.5) mass. Especially, the secondary aerosol mainly involved with sulfate, nitrate, ammonium, and organic carbon contributed to about 39% of the PM(2.5) mass.  相似文献   

2.
随着中国城市化和工业化的加速发展,大气污染的问题日益突出,严重危害公众身体健康。基于安徽省逐小时PM2.5浓度监测数据,采用后向轨迹模式、潜在源因子分析法(PSCF)和权重浓度分析法(CWT),构建PM2.5来源分析模型,分析了安徽省PM2.5的来源,并结合地理探测器辨析了影响PM2.5本底贡献浓度的驱动因子。结果表明:(1)本底贡献、本底外溢和外地输送这3个动态过程对安徽省PM2.5浓度的时空变化有重要的影响;(2)PM2.5月累计逐小时测量浓度、总浓度、外地输送浓度、本底贡献浓度、本底外溢浓度和月均PM2.5本底排放贡献率,均在整体呈现出西南高、东北低的分布趋势,但前3项在安徽西北部的阜阳、亳州和淮北等地出现高值区;(3)安徽省约97.5%的面积外地输送贡献率>50%,下辖市PM2.5本底排放贡献率在30%~50%,说明1月污染以外地输送为主;(4)工厂密度、车辆保有量密度和人口密度对PM2.5月累计本底贡献浓度的解释力q值分别为0.33、0.47和0.61,通过与PM2.5月累计测量浓度地理探测分析结果的比较,表明人为要素与PM2.5月累计本底贡献浓度的关系更加密切。研究结果可为区域大气污染治理提供科学的参考依据。  相似文献   

3.
The fine and ultra fine sizes of diesel particulate matter (DPM) are of greatest health concern. The composition of these primary and secondary fine and ultra fine particles is principally elemental carbon (EC) with adsorbed organic compounds, sulfate, nitrate, ammonia, metals, and other trace elements. The purpose of this study was to use an advanced air quality modeling technique to predict and analyze the emissions and the primary and secondary aerosols concentrations that come from diesel-fueled sources (DFS). The National Emissions Inventory for 1999 and a severe southeast ozone episode that occurred between August and September 1999 were used as reference. Five urban areas and one rural area in the Southeastern US were selected to compare the main results. For urban emissions, results showed that DFS contributed (77.9%+/-8.0) of EC, (16.8%+/-8.2) of organic aerosols, (14.3%+/-6.2) of nitrate, and (8.3%+/-6.6) of sulfate during the selected episodes. For the rural site, these contributions were lower. The highest DFS contribution on EC emissions was allocated in Memphis, due mainly to diesel non-road sources (60.9%). For ambient concentrations, DFS contributed (69.5%+/-6.5) of EC and (10.8%+/-2.4) of primary anthropogenic organic aerosols, where the highest DFS contributions on EC were allocated in Nashville and Memphis on that episode. The DFS contributed (8.3%+/-1.2) of the total ambient PM(2.5) at the analyzed sites. The maximum primary DPM concentration occurred in Atlanta (1.44 microg/m(3)), which was 3.8 times higher than that from the rural site. Non-linearity issues were encountered and recommendations were made for further research. The results indicated significant geographic variability in the EC contribution from DFS, and the main DPM sources in the Southeastern U.S. were the non-road DFS. The results of this work will be helpful in addressing policy issues targeted at designing control strategies on DFS in the Southeastern U.S.  相似文献   

4.
This research was the first long-term attempt to concurrently measure and identify major sources of both PM(10) and PM(2.5) in Bangkok Metropolitan Region (BMR). Ambient PM(10) and PM(2.5) were evaluated at four monitoring stations and analyzed for elemental compositions, water-soluble ions, and total carbon during February 2002-January 2003. Fifteen chemical elements, four water-soluble ions, and total carbon were analyzed to assist major source identification by a receptor model approach, known as chemical mass balance. PM(10) and PM(2.5) were significantly different (p<0.05) at all sites and 24 h averages were high at traffic location while two separated residential sites were similar. Seasonal difference of PM(10) and PM(2.5) concentrations was distinct between dry and wet seasons. Major source of PM(10) at the traffic site indicated that automobile emissions and biomass burning-related sources contributed approximately 33% each. Automobiles contributed approximately 39 and 22% of PM(10) mass at two residential sites while biomass burning contributed about 36 and 28%. PM(10) from re-suspended soil and cooking sources accounted for 10 to 15% at a residential site. Major sources of PM(2.5) at traffic site were automobile and biomass burning, contributing approximately 32 and 26%, respectively. Biomass burning was the major source of PM(2.5) mass concentrations at residential sites. Meat cooking also accounted for 31% of PM(2.5) mass at a low impact site. Automobile, biomass burning, and road dust were less significant, contributed 10, 6, and 5%, respectively. Major sources identification at some location had difficulty to achieve performance criteria due to limited source profiles. Improved in characterize other sources profiles will help local authority to better air quality.  相似文献   

5.
Comparative overview of indoor air quality in Antwerp, Belgium   总被引:2,自引:0,他引:2  
This comprehensive study, a first in Belgium, aimed at characterizing the residential and school indoor air quality of subgroups that took part in the European Community Respiratory Health Survey and the International Study of Asthma and Allergy in Childhood [Masoli M, Fabian D, Holt S, Beasley R. Global Burden of Asthma, Medical Research Institute of New Zealand, University of Southampton; 2004.] questionnaire-based asthma and related illnesses studies. The principal aim was to perform a base-line study to assess the indoor air quality in Antwerp in terms of various gaseous and particulate pollutants. Secondly, it aimed to establish correlations between these pollutants investigated, the pollutant levels in the indoor and outdoor micro-environments, findings of the previous questionnaire-based studies and an epidemiological study which ran in conjunction with this study. Lastly, these results were compared and evaluated with current indoor and ambient guidelines in various countries This paper presents selected results on PM1, PM2.5 and PM10 mass concentrations and elemental C estimates as black smoke, as well as gaseous NO(2), SO(2), O(3) and BTEX concentrations of 18 residences and 27 schools. These are related to current guidelines of Flanders, Germany, Norway, China and Canada and evaluated with reference to selected similar studies. It was found that indoor sources such as tobacco smoking and carpets, the latter causing re-suspension of dust, are responsible for elevated indoor respirable particulate matter and place school children and residents at risk. Both PM2.5 and PM10 equalled or exceeded the current guidelines adopted by Flanders, noting that 12-h and 24-h PM2.5 were compared with an annual limit value. Indoor and ambient NO(2) concentrations in the school campaign were higher than the annual EU ambient norm. The other studied pollutant levels were below the current guidelines.  相似文献   

6.
From 26 October 2002 to 8 March 2003, particulate matter (PM) concentrations (total suspended particles [TSP], PM10, PM2.5 and PM1) were measured at 49 public places representing different environments in the urban area of Beijing. The objectives of this study were (1) to characterize the indoor PM concentrations in public places, (2) to evaluate the potential indoor sources and (3) to investigate the contribution of PM10 to TSP and the contributions of PM2.5 and PM1 to PM10. Additionally, The indoor and outdoor particle concentrations in the same type of indoor environment were employed to investigate the I/O level, and comparison was made between I/O levels in different types of indoor environment. Construction activities and traffic condition were the major outdoor sources to influence the indoor particle levels. The contribution of PM10 to TSP was even up to 68.8%, while the contributions of PM2.5 and PM1 to PM10 were not as much as that of PM10 to TSP.  相似文献   

7.
This study presents the statistical analysis of PM(10) and PM(2.5) concentrations (measured at a central site, in the Athens area), along with black smoke (BS) data, for a 2-year period. The biennial average concentrations of PM(10) and PM(2.5) were 75 and 40 microg m(-3). The respective average concentration of BS, as estimated by the OECD method, was 108 microg m(-3). Severe exceedances of the PM(10) air quality standards were recorded. The seasonal variation of PM(10) and BS was less pronounced than the variation of PM(2.5), which concentration was elevated by 14.2% during the cold period. Concentrations of all three pollutants were significantly lower during weekends; however, PM(2.5) and BS displayed a more uniform weekly distribution pattern. PM(10) particles were found to be almost equally comprised by PM(2.5) and PM(10-2.5) particles (PM(2.5)/PM(10) ratio=0.53+/-0.09 microg/m(3)). The average PM(10)/BS value was found lower than unity revealing the inappropriateness of the used reflectance conversion method, for the estimation of mass-equivalent BS concentrations, in the study area, where diesel-powered vehicles mainly control emissions of light-absorbing substances. Important reductions in concentrations were observed during days when drivers of diesel-powered taxies and transportation buses went on strike (reaching 40% for BS). Calm wind conditions were found to have an incremental effect on particle concentrations and were also associated with the appearance of persistent episodic events. Increased PM levels were also observed during southern-southwestern wind flows while significantly lower-than-average concentrations were measured during precipitation events. Separate regression analyses were performed for PM(10), PM(2.5) with BS and NO(x) as independent variables, in an attempt to estimate the relative contribution of specific source types (diesel-powered vehicles) to measured particle levels. The contribution of the diesel-exhaust component to PM(10) mass was estimated at 49.9%, while the corresponding contributions to PM(2.5) mass concentrations was 53.8%. These results may have important implications with the oncoming decision of national authorities to allow the purchase of diesel-powered private cars to the residents of the Greater Athens Area, which was forbidden up to this day.  相似文献   

8.
PM2.5 is one of the most important aspects of environmental health. This air pollutant is breathable and it is implicated in several chronic adverse health effects such as the decrease of respiratory functionality and cancer. Several in vitro bioassays are able to predict the mutagenic/carcinogenic activity of the environmental pollutants and mixtures of them. In this study PM2.5 air pollution was daily monitored in three cities located in the Northern part of Italy and the mutagenic properties of the PM2.5 organic extracts were also assessed. Samplings lasted 14 months and cover the period of the Winter Olympic Games of "Torino 2006". In this work, the levels of PM2.5, its mutagenic properties (detected with Salmonella typhimurium assay), the role of the Olympic Games as environmental factor and some meteorological data are discussed. The mean concentration of PM2.5 measured in Torino was 45.4 (+/-30.6) microg/m(3), in Pavia 37.6 (+/-25.6) microg/m(3), in Verona 43.1 (+/-28.5) microg/m(3). Findings of the monthly pool bioassay were in Torino 107 (+/-104) net revertans/m(3), in Pavia 108 (+/-89) net revertans/m(3), in Verona 128 (+/-109) net revertans/m(3). The Olympic Games period data show that PM2.5 pollution and its load of mutagenic potential are different and partially independent phenomena. The Olympic Games had not a great impact on the PM2.5 pollution. The exclusive PM2.5 gravimetric analysis shows a potential human risk if compared with the latest international guide values but it does not describe exhaustively the human health risk associated to the presence of this particular air pollutant. Moreover, the chemical and biological activity qualification of the PM organic extracts as a whole, can instead improve the knowledge.  相似文献   

9.
Characterization of water-soluble ion species in urban ambient particles   总被引:18,自引:0,他引:18  
Concentrations and distributions of water-soluble ion species contained in ambient particles were measured in a coastal urban area, Kaohsiung City, Taiwan. PM10 and PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and were analyzed for water-soluble ion species with ion chromatography. On the average, ion species measured in this study accounted for 42.2% of the PM2.5 and 35.7% of the PM10. It was found that SO4(2-) , NO3-, and NH4+ dominated the identifiable components within both fine (PM2.5) and coarse (PM2.5-10) fractions, and occupied 90.0% and 80.6% of total dissolved ionic concentrations for PM2.5 and PM10. The secondary aerosol formed through the NOx/SO2 gas-to-particle conversion was estimated based on the oxidation ratio of sulfur and nitrogen (SOR and NOR, respectively), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR/NOR values were 0.25/0.07 and 0.29/0.12 for PM25 and PM10, respectively. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO4(2-) from SO2 along with NO3- from NOx in the atmosphere.  相似文献   

10.
Ambient concentrations and the elemental composition of particles less than 2.5 microm in diameter (PM2.5), as well as carbon monoxide (CO) concentrations, were measured at ground-level in three Guatemalan cities in summer 1997: Guatemala City, Quetzaltenango, and Antigua. This pilot study also included quantitative and qualitative characterizations of microenvironment conditions, e.g., local meteorology, reported elsewhere. The nondestructive X-ray fluorescence elemental analysis (XRF) of Teflon filters was conducted. The highest integrated average PM2.5. concentrations in an area (zona) of Guatemala City and Quetzaltenango were 150 microg m(-3) (zona 12) and 120 microg m(-3) (zona 2), respectively. The reported integrated average PM2.5 concentration for Antigua was 5 microg m(-3). The highest observed half-hour and monitoring period average CO concentrations in Guatemala City were 10.9 ppm (zona 8) and 7.2 ppm (zonas 8 and 10), respectively. The average monitoring period CO concentration in Antigua was 2.6 ppm. Lead and bromine concentrations were negligible, indicative of the transition to unleaded fuel use in cars and motorcycles. The XRF results suggested sources of air pollution in Guatemala, where relative rankings varied by city and by zonas within each city, were fossil fuel combustion emitting hydrocarbons, combustion of sulfurous conventional fuels, soil/roadway dust, farm/agricultural dust, and vehicles (evaportion of gas, parts' wear).  相似文献   

11.
The fine and ultra fine size of diesel particulate mater (DPM) are of great health concern and significantly contribute to the overall cancer risk. In addition, diesel particles may contribute a warming effect on the planet's climate. The composition of these particles is composed principally of elemental carbon (EC) with adsorbed organic compounds, sulfate, nitrate, ammonia, metals, and other trace elements. The purpose of this study was to depict the seasonality and modeling of particulate matter in the Southeastern US produced by the diesel fueled sources (DFSs). The modeling results came from four one-month cases including March, June, September, and December to represent different seasons in 2003 by linking Models-3/CMAQ and SMOKE. The 1999 National Emissions Inventory Version 3 (NEI99) was used in this analysis for point, area, and non-road sources, whereas the National Mobile Inventory Model (NMIM) was used to create the on-road emissions. Three urban areas, Atlanta, Birmingham, and Nashville were selected to analyze the DPM emissions and concentrations. Even though the model performance was not very strong, it could be considered satisfactory to conduct seasonal distribution analysis for DPM. Important hourly DPM seasonality was observed in each city, of which higher values occurred at the morning traffic rush hours. The EC contributions of primary DPM were similar for all three sites (~ 74%). The results showed that there is no significant daily seasonality of DPM contribution to PM2.5 for any of these three cities in 2003. The annual DPM contribution to total PM2.5 for Atlanta, Nashville, and Birmingham were 3.7%, 2.5%, and 2.2%, respectively.  相似文献   

12.
为了对长三角地区大气污染进行防治和控制,了解长三角地区大气环境质量变化规律,有必要对其颗粒物的组成及特征进行分析,以揭示其形成机制。采用Partisal plus2025 型连续空气采样机在嘉兴双桥农场(长三角中心)进行采样,利用对采样样品化学分析的结果,分析了PM10、PM25的化学组成、质量浓度的分布特征及其相对关系。 PM25和PM10中19种无机元素质量浓度的总和约占其质量浓度的23%和25%,其中Al、Si、Ca是主要贡献元素;8种水溶性离子质量浓度总和约占PM25和PM10质量浓度的51%和43%,其中NO-3和SO2-4是主要贡献成分;有机碳的质量浓度约占PM25和PM10质量浓度的1612%和1743%,元素碳的质量浓度约占PM25和PM10质量浓度的1697%和1584%,可见该地区存在较严重的二次有机碳污染和元素碳污染。研究结果为揭示大气颗粒物的形成机制和对其污染进行防治和控制提供了基础性的研究数据。  相似文献   

13.
选取2014~2017年南昌市不同时间尺度AQI及主要空气污染物数据,利用GIS技术、神经网络分析、后向轨迹模型及地统计分析方法,分析了南昌市环境空气污染时空变化特征及影响因素。结果表明,南昌市近年来空气质量总体变化不大,空气质量等级以良为主,占全年比例为57%~61%。但首要污染物变化较大,即PM2.5比例显著下降,NO2和O3比例显著上升,PM10变化不大。南昌市空气污染季节变化显著,冬春季空气质量较差,以PM10、PM2.5污染为主,夏季空气质量最好,以O3污染为主。空气污染周变化以周末及周一污染较重、周四污染最轻,说明南昌市空气污染除了与群众出行习惯有关,还存在其他影响因素。南昌市空气质量日变化呈双峰型(9:00~11:00和20:00~22:00),主要受上、下班高峰期带来的交通尾气影响。南昌市空气污染空间变化呈典型的“郊区-市区”分布,其中AQI、PM10、PM2.5、SO2、NO2、CO值均以市区较高、郊区较低,而O3的空间分布规律正好相反,这主要与城区NOx排放较多,O3易与其迅速反应而消耗有关。后向轨迹聚类分析结果表明,来自本地的短轨迹气团占比高,对PM2.5、PM10、NO2、O3的影响大。气象因素上,PM2.5、PM10、NO2受相对湿度影响较大,O3受温度影响较大。  相似文献   

14.
The findings on health effects of ambient fine particles (PM2.5) and coarse particles (PM10-2.5) remain inconsistent. In China, PM2.5 and PM10-2.5 are not the criteria air pollutants, and their monitoring data are scarce. There have been no epidemiological studies of health effects of PM2.5 and PM10-2.5 simultaneously in China. We conducted a time series study to examine the acute effects of PM2.5 and PM10-2.5 on daily mortality in Shanghai, China from Mar. 4, 2004 to Dec. 31, 2005. We used the generalized additive model (GAM) with penalized splines to analyze the mortality, air pollution and covariate data. The average concentrations of PM2.5 and PM10-2.5 were 56.4 microg/m3 and 52.3 microg/m3 in our study period, and PM2.5 constituted around 53.0% of the PM10 mass. Compared with the Global Air Quality Guidelines set by World Health Organization (10 microg/m3 for annual mean) and U.S. National Ambient Air Quality Standards (15 microg/m3 for annual mean), the PM2.5 level in Shanghai was much higher. We found that PM2.5 was associated with the death rates from all causes and from cardiorespiratory diseases in Shanghai. We did not find a significant effect of PM10-2.5 on mortality outcomes. A10 microg/m3 increase in the 2-day moving average (lag01) concentration of PM2.5 corresponded to 0.36% (95% CI 0.11%, 0.61%), 0.41% (95% CI 0.01%, 0.82%) and 0.95% (95% CI 0.16%, 1.73%) increase of total, cardiovascular and respiratory mortality. For PM10-2.5, the effects were attenuated and less precise. Our analyses provide the first statistically significant evidence in China that PM2.5 has an adverse effect on population health and strengthen the rationale for further limiting levels of PM2.5 in outdoor air in Shanghai.  相似文献   

15.
In this study, organic extracts of total suspended particles (TSP) and the particulate matter (PM) with the size below 2.5 microm (PM(2.5)) combined with organic extracts of the gas phase (GP) collected at two urban and two background localities were analyzed with a bacterial genotoxicity test, SOS chromotest, and an in vitro test for the dioxin toxicity determination, using a modified cell-line of rat hepatoma H4IIE.luc. In addition, the samples of TSP and GP were analyzed for PAHs contents. The PAHs concentrations and both of the toxic activities at the urban localities were much higher than ones at the background localities. Predominantly, traffic was a source of the urban air pollution there which was also confirmed by the evaluation of portions of certain PAHs (BaP/BPE, PYR/BaP) at the localities. On the other hand, the background localities were apparently affected by a long-distance transport of the pollutants from urban and industrial centers. The results of the bioassays indicated potential health risks for the population exposed to the organic air pollutants, especially at the urban localities. Based on the collected samples, distribution of the organic pollutants with the toxic effects in the air was evaluated. The significant portion of the direct genotoxins was bound to the particles larger than 2.5 microm. On the contrary, the indirect genotoxins were bound predominantly to the particles with the size below 2.5 microm. However, in the urban air they may be also bound to the larger particles, as well. While the direct genotoxicity may be related with the presence of PAH-derivatives as well as some polar organic pollutants, the indirect genotoxicity is related with the detected carcinogenic PAHs. But besides the above specified pollutants it is also necessary to consider the presence of other toxic components of the complex organic air pollution mixture that may also show potential health risks. This study demonstrates application of the combination of the screening bioassays for the evaluation of organic air pollution and identification of its health risks.  相似文献   

16.
PM2.5 is the breathable fraction of the particulate matter and some adverse health effects, such as respiratory functionality, cardiological diseases and cancer, can be in some measure attributable to this risk factor exposure. Some of the most carcinogen compounds transported by PM2.5 are nitro-compounds. In this study, a strengthened in vitro bioassay — able to predict the mutagenic/carcinogenic activity of the environmental mixtures — was conducted on PM2.5 organic extracts to define the nitro-compounds burden. PM2.5 air pollution was daily monitored, during 2006, in three cities located in the Northern part of Italy (Torino, Pavia and Verona) and the mutagenic properties of the PM2.5 organic extracts were assessed with the Ames test. The bacterial used in this study were three Salmonella typhimurium strains: TA98, nitroreductase-less mutant TA98NR and YG1021 carrying a nitroreductase-producing plasmid. The annual PM2.5 mean level measured in Torino was 46.5 (± 31.6) μg/m3, in Pavia 34.8 (± 25.1) μg/m3, and in Verona 37.3 (± 27.8) μg/m3, while the mutagenicity expressed as TA98 net reverants/m3 was 28.0 (± 22.1), 28.3 (± 24.9), and 34.2 (± 30.9) respectively. Monthly pool bioassays, conducted with the three different strains, showed a greater mutagenic response of the YG1021 in each city. The relationship among the mutagenic answers for YG1021:TA98:TA98NR was about 6:3:1 (p < 0.001). Over nitroreductase activity enhanced the response of 2.2, 2.0 and 1.7 times for Torino, Pavia, and Verona (ANOVA Torino p < 0.05) respectively. Without nitroreductase activity the genotoxicity was limited. These biological findings are able to describe a relevant role played by the nitro compounds in the mutagenic properties of the urban PM2.5 in the Padana plain; moreover the bacterial nitroreductase plays a predominant role in DNA interaction primarily for Torino PM2.5 extracts.  相似文献   

17.
Ambient particle concentration was taken on the traffic sampling site over the Chung-Chi Road over the bridge (CCROB) in front of Hungkuang Institute of Technology (HKIT). The sampling time was from August 1999 to December 1999. During the sampling period, Taiwan's biggest earthquake in more than a century registered 7.3 on the Richter scale (Taiwan Chi-Chi Earthquake). Besides, there are more than 20,000 aftershocks following the Taiwan Chi-Chi Earthquake within 3 months. Thus, the mass concentration of particles with aerodynamic diameters smaller than 2.5 microm (PM2.5) and PM2.5-10 was also collected then compared with the total mass concentration of suspended particles (TSP) in this study. The average TSP, PM2.5-10, and PM2.5 concentrations are 106, 24.6, and 58.0 microg/m3, respectively, after the Taiwan Chi-Chi Earthquake. The average TSP concentrations before and after Taiwan Chi-Chi Earthquake were 69.6 and 127 microg/ m3, respectively. In addition, statistical analysis of the PM10 data from this study and EPA in 1999 yielded a Tstatistic of 0.147, which is smaller than t(0.975,18) = 2.101. It is indicated that there was no significant difference. So, the PM10 concentrations measured after Taiwan Chi-Chi Earthquake in this study were also greater than those data previously obtained from Taiwan EPA in the same region of this area. The relationships between TSP, PM10, PM2.5-10, and PM2.5 particle concentrations and wind speed (R2) are .77, .59, .58, .58, respectively. And the ratios of PM2.5/PM25-10, PM2.5/PM10, and PM10/TSP are 221%, 67.2%, 58.0%, respectively. The average ratios of PM2.5/PM2.5-10 and PM2.5/PM10 increase by about 120% and 17%. It indicated that the fine-particles concentration increases compared to the coarse-particles concentration after 921 Taiwan Chi-Chi Earthquake. And the proposed reasons are that local motor vehicle emissions combined the fine particles transported from the Chi-Chi epicenter. More importantly, the wind direction was mainly blown from southeastern part. These two main factors enhance the fine-particles concentration in this area.  相似文献   

18.
本文利用了1998—2012年中国241个城市的空间面板数据对中国雾霾污染和FDI的区域分布特征及空间溢出效应进行经验考察,结合系统广义矩估计(SGMM)方法构建了动态空间面板模型,采用了Moran’s I和Geary’s C指数对中国FDI与雾霾(PM_(2.5))污染空间自相关性进行了全域和局域分析。结果发现:(1)雾霾(PM_(2.5))污染与FDI存在显著的空间正相关性,证明了雾霾(PM_(2.5))污染空间的溢出效应以及FDI的辐射效应的存在。同时FDI高值集聚区域一般是雾霾(PM_(2.5))高值集聚区,FDI低值集聚区域一般是雾霾(PM_(2.5))低值集聚区,表明一个地区的引资效果和雾霾(PM_(2.5))污染在地理上的集聚密切相关。雾霾(PM_(2.5))污染表现出显著的"叠加效应"和"溢出效应",说明中国雾霾(PM_(2.5))污染在空间维度、时间维度以及时空维度上分别表现出交叉、累积、持续的演变特征。(2)全样本下,FDI对雾霾(PM_(2.5))浓度的影响表现出增促效应。FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.011%。(3)分地区样本下,东部城市FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.001 9%;中部城市FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.018 3%;而西部城市FDI存量对雾霾(PM_(2.5))浓度影响不显著。上述实证结果说明中国雾霾污染存在着显著的空间依赖性和区域异质性,FDI对中国大部分城市的雾霾污染存在显著的增促效应。  相似文献   

19.
利用2017年合肥市污染监测站点PM_(2.5)浓度数据、气象数据以及土地利用类型数据,结合随机森林算法(RF)与土地利用回归模型(LUR),模拟合肥市PM_(2.5)浓度空间分布,并利用主成分分析法对PM_(2.5)影响因素进行分析。结果表明:(1)合肥市PM_(2.5)浓度日变化特征大致呈双峰变化,春季、夏季及秋季的峰值多出现在8∶00~9∶00,而冬季的峰值则出现在10∶00~11∶00。低谷值大致都出现在15∶00~17∶00。全年PM_(2.5)浓度变化趋势与春季类似。夏季PM_(2.5)浓度变化最为平稳。(2)2017年合肥市PM_(2.5)浓度分布由城市中心向外减弱,形成北高南低,西高东低的空间分布格局。(3)影响因素方面,PM_(2.5)浓度变化与降水、风速以及相对湿度等呈负相关关系,日照对PM_(2.5)浓度的影响较大,气压及其他污染物与PM_(2.5)浓度呈正相关关系,其中NO_2对PM_(2.5)浓度的影响力度较大。  相似文献   

20.
PM(10) concentration and chemical composition (ions and carbon compounds) at three sampling stations in Rome and in its surroundings was determined daily during a one-month field study, carried out during December 2003. PM concentration at the traffic station was considerably higher than at the urban background and semi-rural stations; elemental carbon was detected as one of the chemical components responsible for this increase. The difference in the concentration of sulphate and ammonium was negligible, as it was expected for secondary pollutants. A negative artefact in the determination of ammonium nitrate by means of heated automatic monitors was highlighted. The dilution properties of the lower atmosphere were traced by means of a natural radioactivity monitor. This parameter has been found to play an essential role in pollution buildup. A considerable increase in PM concentration was observed to coincide with periods of atmospheric stability. The main difference in PM composition between periods of high concentration and periods of "clean" air was found to be in the increase of ammonium nitrate concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号