首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a transnational groundwater survey of the 62,000 km(2) Mekong delta floodplain (Southern Vietnam and bordering Cambodia) and assesses human health risks associated with elevated concentrations of dissolved toxic elements. The lower Mekong delta generally features saline groundwater. However, where groundwater salinity is <1 g L(-)(1) Total Dissolved Solids (TDS), the rural population started exploiting shallow groundwater as drinking water in replacement of microbially contaminated surface water. In groundwater used as drinking water, arsenic concentrations ranged from 0.1-1340 microg L(-)(1), with 37% of the studied wells exceeding the WHO guidelines of 10 microg L(-)(1) arsenic. In addition, 50% exceeded the manganese WHO guideline of 0.4 mg L(-)(1), with concentrations being particularly high in Vietnam (range 1.0-34 mg L(-)(1)). Other elements of (minor) concern are Ba, Cd, Ni, Se, Pb and U. Our measurements imply that groundwater contamination is of geogenic origin and caused by natural anoxic conditions in the aquifers. Chronic arsenic poisoning is the most serious health risk for the ~2 million people drinking this groundwater without treatment, followed by malfunction in children's development through excessive manganese uptake. Government agencies, water specialists and scientists must get aware of the serious situation. Mitigation measures are urgently needed to protect the unaware people from such health problems.  相似文献   

2.
The characteristics of arsenic-contaminated groundwater and the potential risks from the groundwater were investigated. Arsenic contamination in groundwater was found in four villages (Vinh Tru, Bo De, Hoa Hau, Nhan Dao) in Ha Nam province in northern Vietnam. Since the groundwater had been used as one of the main drinking water sources in these regions, groundwater and hair samples were collected in the villages. The concentrations of arsenic in the three villages (Vinh Tru, Bo De, Hoa Hau) significantly exceeded the Vietnamese drinking water standard for arsenic (10 microg/L) with average concentrations of 348, 211, and 325 microg/L, respectively. According to the results of the arsenic speciation testing, the predominant arsenic species in the groundwater existed as arsenite [As(III)]. Elevated concentrations of iron, manganese, and ammonium were also found in the groundwater. Although more than 90% of the arsenic was removed by sand filtration systems used in this region, arsenic concentrations of most treated groundwater were still higher than the drinking water standard. A significant positive correlation was found between the arsenic concentrations in the treated groundwater and in female human hair. The risk assessment for arsenic through drinking water pathways shows both potential chronic and carcinogenic risks to the local community. More than 40% of the people consuming treated groundwater are at chronic risk for arsenic exposure.  相似文献   

3.
The biological treatment of groundwater is used primarily to remove electron donors from water sources, providing (biologically) stable drinking water, which preclude bacterial regrowth during subsequent water distribution. To the electron donors belong also the dissolved metal cations of ferrous iron and manganese, which are common contaminants found in most (anaerobic) groundwater. The removal of iron and manganese is usually accomplished by the application of chemical oxidation and filtration. However, biological oxidation has recently gained increased importance and application due to the existence of certain advantages, over the conventional physicochemical treatment. The oxidation of iron and manganese is accelerated by the presence of certain indigenous bacteria, the so-called "iron and manganese oxidizing bacteria." In the present paper, selected long-term experimental results will be presented, regarding the bioremediation of natural groundwater, containing elevated concentrations of iron and arsenic. Arsenic is considered as a primary pollutant in drinking water due to its high toxicity. Therefore, its efficient removal from natural waters intended for drinking water is considered of great importance. The application of biological processes for the oxidation and removal of dissolved iron was found to be an efficient treatment technique for the simultaneous removal of arsenic, from initial concentrations between 60 and 80 microg/l to residual (effluent) arsenic concentrations lower than the limit of 10 microg/l. The paper was focused on the removal of As(III) as the most common species in anaerobic groundwater and generally is removed less efficiently than the oxidized form of As(V). To obtain information for the mechanism of As(III) removal, X-ray photoelectron spectroscopy (XPS) analyses were applied and it was found that As(III) was partially oxidized to As(V), which enabled the high arsenic removal efficiency over a treatment period of 10 months.  相似文献   

4.
A review of published information on the arsenic contamination of groundwater in the Terai regions of Nepal showed that the source was mainly geogenic due to the dissolution of the arsenic-bearing minerals. Clinical observations of patients in the arsenic affected districts revealed chronic arsenic poisoning from drinking water. Half a million people inhabiting the region are believed to have been exposed to arsenic levels greater than 50 microg/L in their drinking water. Thirty-one percent of the population (3.5 million) in the region are estimated to have been exposed to arsenic levels between 10 and 50 microg/L. Iron assisted biosand filters currently distributed and in operation are a suitable alternative to mitigate the interim arsenic standard of 50 microg/L, as set by the Nepal Government. Arsenic biosand filters were also effective in removing bacteria and viruses from drinking water in laboratory and field tests. However, groundwater treatment targeting cluster communities in the Terai region is the sustainable way of mitigating the arsenic problem.  相似文献   

5.
The current arsenic exposure condition, arsenicosis prevalence, urinary arsenic and MDA (malondialdehyde) concentrations in people were studied. The study area, a village in Xing Ren County in Guizhou Province, PR China, is a coal-borne arsenicosis endemic area that was identified several decades ago. The residents in Xing Ren have been using coal containing high arsenic levels all their life. Urinary arsenic levels of villagers were 192.2+/-22 microg/g creatinine (n=113) in the coal-borne endemic area (Xing Ren county) and were significantly higher than 63.6+/-5.9 microg/g creatinine (n=30) in a neighbouring control site (a village in Xing Yi county). The urinary MDA concentrations of villagers from the endemic area were also significantly higher compared to those of the control area. There was a strong correlation between age and urinary arsenic and MDA concentrations in the endemic area of Xing Ren; urinary arsenic and MDA levels decreased with age. Fifty out of 113 (44.3%) villagers in the endemic area had arsenicosis symptoms and the prevalence in villagers older than 40 y was 100% in male (92.2% overall). Urinary MDA concentration was significantly higher in people with arsenicosis symptoms in the endemic areas. Oxidative stress (urinary MDA concentration) was strongly related to arsenic exposure but not to the age and smoking habit. Higher urinary arsenic and MDA levels in younger villagers from the endemic area suggest that they are having a higher exposure to coal-borne emitted arsenic because they spend more time indoor. There is an urgent need to develop proper intervention methods in the Guizhou endemic areas in order to reduce the risk to the local communities who are still using arsenic contaminated-coal.  相似文献   

6.
Concentrations of nitrate and trace elements such as arsenic,cadmium,chromium,copper,manganese,nickel,lead,selenium,antimony and mercury in 18 different brands of bottled water were investigated.For comparison,samples of tap and well water from three different places of Tehran were also analyzed.UV/VIS spectrophotometer and Graphite Furnace Atomic Absorption Spectrometer were used for the analysis of nitrate and trace elements,respectively.Results obtained were compared to Iranian,World Health Organization(WHO)and Environmental Protection Agency(EPA)guideline for drinking water.Nitrate concentration in bottled,tap and well water samples were in maximum safe nitrate concentration of Iranian and WHO standards.However,70%of bottled water samples and one sample of tap water were below the standard level proposed by EPA and probably remedial action should be taken.Concentration levels of all analyzed elements investigated in all examined water samples were below the maximum contaminant level prescribed by Iranian,WHO and EPA regulations.  相似文献   

7.
ObjectivesThe aim of this study was to evaluate the massive efforts to lower water arsenic concentrations in Bangladesh.MethodsIn our large mother–child cohort in rural Matlab, we measured the arsenic concentrations (and other elements) in drinking water and evaluated the actual exposure (urinary arsenic), from early gestation to 10 years of age (n = 1017).ResultsMedian drinking water arsenic decreased from 23 (2002–2003) to < 2 μg/L (2013), and the fraction of wells exceeding the national standard (50 μg/L) decreased from 58 to 27%. Still, some children had higher water arsenic at 10 years than earlier. Installation of deeper wells (> 50 m) explained much of the lower water arsenic concentrations, but increased the manganese concentrations. The highest manganese concentrations (~ 900 μg/L) appeared in 50–100 m wells. Low arsenic and manganese concentrations (17% of the children) occurred mainly in > 100 m wells. The decrease in urinary arsenic concentrations over time was less apparent, from 82 to 58 μg/L, indicating remaining sources of exposure, probably through food (mean 133 μg/kg in rice).ConclusionDespite decreased water arsenic concentrations in rural Bangladesh, the children still have elevated exposure, largely from food. Considering the known risks of severe health effects in children, additional mitigation strategies are needed.  相似文献   

8.
Electric conductivity, pH, COD(Mn), nutrient concentration, chloride and sulfate concentrations, total dissolved sodium, potassium, calcium, magnesium, manganese, iron, cadmium, copper, arsenic, nickel, zinc, chromium and lead were evaluated to clarify concerns about the quality and safety of water used for drinking purposes in Qinghai Province, China. For this purpose, 12 water samples were collected from different villages, Qinghai (Koko Nor) Lake and medicinal springs close to the Town of Pingang during a study visit to China in 2003. The results showed that National Chinese and WHO drinking water standards were exceeded for nutrient concentration (3.2 mg l(-1) of TOT-N and 0.2 mg l(-1) of TOT-P) from Qinghai Lake. The presence of elevated electric conductivity (550 mS m(-1)) in mineral water resort samples should be a matter of a public concern. Also, samples from medicinal springs showed high concentrations of Fe (up to 1.9 mg l(-1)), As (up to 0.1 mg l(-1)) and Ni (0.05 mg l(-1)), which may be detrimental for human health if the water is consumed on a daily basis. The concentrations of Cu, Cd, Cr and Pb did not exceed the National Chinese and WHO drinking water standards, and therefore, water from the sampling area does not pose any significant threat to the consumers' health regarding these metals.  相似文献   

9.
The reverse osmosis process was evaluated for removal of naturally occurring arsenic and fluoride from groundwater. Arsenic removal was affected by the prevalent arsenic species present in the water. Arsenic concentrations were reduced by approximately 60%–90% from nearly 80 μg/L. Fluoride concentrations were reduced by approximately 60% from nearly 1.7 mg/L.  相似文献   

10.
This study aims to assess the link between fluoride content in groundwater and its impact on dental health in rural communities of the Ethiopian Rift. A total of 148 water samples were collected from two drainage basins within the Main Ethiopian Rift (MER). In the Ziway–Shala basin in particular, wells had high fluoride levels (mean: 9.4 ± 10.5 mg/L; range: 1.1 to 68 mg/L), with 48 of 50 exceeding the WHO drinking water guideline limit of 1.5 mg/L. Total average daily intake of fluoride from drinking groundwater (calculated per weight unit) was also found to be six times higher than the No-Observed-Adverse-Effects-Level (NOAEL) value of 0.06 mg/kg/day. The highest fluoride levels were found in highly-alkaline (pH of 7 to 8.9) groundwater characterized by high salinity; high concentrations of sodium (Na+), bicarbonate (HCO3), and silica (SiO2); and low concentrations of calcium (Ca2 +). A progressive Ca2 + decrease along the groundwater flow path is associated with an increase of fluoride in the groundwater. The groundwater quality problem is also coupled with the presence of other toxic elements, such as arsenic (As) and uranium (U). The health impact of fluoride was evaluated based on clinical examination of dental fluorosis (DF) among local residents using the Thylstrup and Fejerskov index (TFI). In total, 200 rural inhabitants between the ages of 7 and 40 years old using water from 12 wells of fluoride range of 7.8–18 mg/L were examined. Signs of DF (TF score of ≥ 1) were observed in all individuals. Most of the teeth (52%) recorded TF scores of 5 and 6, followed by TF scores of 3 and 4 (30%), and 8.4% had TF scores of 7 or higher. Sixty percent of the teeth exhibited loss of the outermost enamel. Within the range of fluoride contents, we did not find any correlation between fluoride content and DF. Finally, preliminary data suggest that milk intake has contributed to reducing the severity of DF. The study highlights the apparent positive role of milk on DF, and emphasizes the importance of nutrition in management efforts to mitigate DF in the MER and other parts of the world.  相似文献   

11.
Arsenic level of hair samples of apparently healthy Egyptian was measured by means of hydride atomic absorption spectrophotometery. It ranged between 0.04 and 1.04 mg As/kg hair, about 55% of the analysed hair samples were within the range of allowable values (0.08-0.25 mg As/kg hair), but 45% were not. There were no considerable sex-related differences (0.303 and 0.292 mg As/kg hair for males and females, respectively). Different educational levels did not influence it either, when the effect of the age had been excluded. Children and adolescents proved to be more susceptible to arsenic as their mean levels (0.353 microg/g), and were significantly higher than those in the adults (0.233 microg/g). Smoking and some dietary habits had an important role in the elevation of arsenic levels among the nonoccupational Egyptian population: 60% of smokers and 66.7% of indoor passive smokers had arsenic levels >0.25 mg As/kg hair. Arsenic levels were also dependent on the kind of smoking, as hair arsenic of the subject smoking molasses tobacco was found to be significantly higher than that of cigarette smokers (0.459 and 0.209 mg As/kg hair, respectively). The frequency of meat and fish consumption per week was also found to be positively, significantly correlated with arsenic levels. On the other hand, the frequency of consumption of fruits, fresh and cooked vegetables, milk and milk products per week beneficially influenced the arsenic level of the hair samples examined. Arsenic content of the consumed water in Egypt was 0.001 mg/l, which is below the maximum drinking water level allowed by World Health Organisation (WHO). Therefore, the arsenic content of domestic tap water hardly contributed to the arsenic exposure of the Egyptian population in the regions of the study. It is likely that exposure routes by smoking, fish and animal protein consumption are the principal cause of arsenic accumulation in the general Egyptian population.  相似文献   

12.
The contamination of groundwater in Bangladesh by arsenic is a widespread and serious environmental problem, affecting mainly the rural population who rely extensively on groundwater for drinking and cooking. The study conducted survey work in a few affected villages of the Northwest region in Bangladesh. The household survey gathered information on the respondents (affected by arsenic) water usage and sources, knowledge of the arsenic problem, changes in the source of water for drinking and cooking, arsenic mitigation technologies and socio-economic information on the households. The survey work shows that percentage of male patient is higher than female patient among the same level of household income in each study villages. Prevalence of arsenicosis is more among poorer sections and it is directly related to the poverty situation of the community. People know more about the health problems caused by arsenicosis but lack knowledge about mitigation aspects. In one of the study areas, every year an extra 4% tubewell is getting contaminated by arsenic. Arsenic contamination in groundwater also affects the environment and the ecology negatively. The NGOs have been found contributing to a knowledge creation process in the village community as the villagers are showing marked behavioral changes in water-use practice.
Nurun NaharEmail:
  相似文献   

13.
Of the 2508 water samples analyzed in 10 districts of Bangladesh, 51%, on an average, contained arsenic levels of 0.05 to 2.50 mg/l. 95% of nail, 96% of hair, and 94% of urine samples contained arsenic above the normal level. Approximately 3.58 million people out of a total of 17.92 million who are drinking water containing arsenic levels >0.20 mg/l are potentially exposed to high risk of health hazard. Eight thousand and five hundred arsenic patients are identified; they are suffering from various skin lesions, gangrene in leg, skin, lung, bladder, liver, and renal cancer. A big portion of the total population is highly vulnerable to various internal cancers. Lowest arsenic concentration in drinking water producing dermatological disease is found to be 0.103 mg/l. However, the exposure time to develop arsenicosis varies from case to case reflecting its dependence on arsenic level in drinking water and food, nutritional status, genetic variant of human being, and compounding factors. This study has determined the high intensity of fluorescent humic substances in drinking water containing elevated concentrations of arsenic and very low concentrations of heavy metals. The synergistic/antagonistic effect of fluorescent compounds present in drinking water may aggravate the toxicity of arsenic. Geochemical study suggests that arsenic may be released from both reductive dissolution of Fe and Mn (oxy)hydroxide and microbial oxidation of organic matter.  相似文献   

14.
在4次地下水水质监测的基础上,对潜水和浅层承压水的“三氮”含量进行了季节变化和空间差异分析,同时探讨了时空变化的影响因素。分析结果表明:(1)地下水氨氮浓度超标率较高,承压水中浓度明显高于潜水,4次采样结果承压水氨氮浓度超标率均在50% 以上;(2)硝酸盐氮和亚硝酸盐氮含量在承压水中能达到良好的标准,在潜水中超标率高;(3)氨氮浓度季节变化明显,9月份浓度显著高于4、6和11月。硝酸盐氮和亚硝酸盐氮在潜水中6月份浓度最高,在承压水中季节变化不明显;(4)地下水氨氮含量空间变异性强,浓度较高的多集中在流经洪湖的内荆河两侧区域。研究区地下水水质受气象因素、农业活动、农村生活污染以及氧化还原环境的综合影响  相似文献   

15.
成都平原地下水硝酸盐含量空间变异研究   总被引:17,自引:0,他引:17  
采用格网方式,并结合重点抽样布点,运用地统计学方法中的普通克里格和概率克里格法对成都平原76个样点的地下水硝酸盐含量进行空间变异分析。结果表明,目前该区域地下水的硝酸盐含量总体水平不高,但局部区域有超标现象,12 %的区域未达到世界卫生组织规定的饮用水水质标准(小于10 mg/L), 5 %的地区未达到我国规定的生活饮用水卫生标准 (小于20 mg/L);其分布特点是北部 (7.38 mg/L)>东部(5.72 mg/L)>西部(3.91 mg/L)>南部(1.51 mg/L);彭州、郫县、新都三县(区)地下水硝酸盐含量超标的概率最大(0.25~0.50),而区域西北部的大邑县、都江堰以及南部双流县超标的概率最低。普通克里格和概率克里格两种方法的特点分析表明,前者表征了区域硝酸盐含量的空间变异及其分布规律,后者能较好地反映区域硝酸盐污染的风险性程度。  相似文献   

16.
The occurrence of arsenic in drinking water and its detrimental effects have drawn much attention in recent years. Several studies have been conducted in the deltaic plains of River Ganga, NE part of the India, and in other countries, but no systematic study was conducted in South India on occurrence of arsenic in groundwater. The main aim of this study is to determine the level of arsenic in groundwater and to understand the relation with other geochemical parameters of groundwater in the south-eastern coastal aquifer at Kalpakkam region, India. This region is represented by three different lithologies, viz. charnockites, flood plain alluvium and marine alluvium. Twenty-nine representative samples of groundwater were collected and analysed for major ions, metals and isotopes such as 2H and 18O. In addition, geophysical method was also attempted to understand the subsurface condition. The spatial variation in arsenic (As) indicates that higher concentration was observed around the landfill sites and irrigated regions, which was supported by geochemical, statistical and isotopic inferences. The variation in the As with depth, lithology and sources has been clearly brought out. Though the values of As does not exceed the drinking water permissible limit (10 mg/l), it has reached a near permissible level of 8.7 ppb. Hence, it is essential to understand the geochemical behaviour of As for a proper future management of the water resource in the study area.  相似文献   

17.
Arsenic contaminating groundwater in Bangladesh is one of the largest environmental health hazards in the world. Because of the potential risk to human health through consumption of agricultural produce grown in fields irrigated with arsenic contaminated water, we have determined the level of contamination in 100 samples of crop, vegetables and fresh water fish collected from three different regions in Bangladesh. Arsenic concentrations were determined by hydride generation atomic absorption spectrophotometry. All 11 samples of water and 18 samples of soil exceeded the expected limits of arsenic. No samples of rice grain (Oryza sativa L.) had arsenic concentrations more than the recommended limit of 1.0 mg/kg. However, rice plants, especially the roots had a significantly higher concentration of arsenic (2.4 mg/kg) compared to stem (0.73 mg/kg) and rice grains (0.14 mg/kg). Arsenic contents of vegetables varied; those exceeding the food safety limits included Kachu sak (Colocasia antiquorum) (0.09-3.99 mg/kg, n=9), potatoes (Solanum tuberisum) (0.07-1.36 mg/kg, n=5), and Kalmi sak (Ipomoea reptoms) (0.1-1.53 mg/kg, n=6). Lata fish (Ophicephalus punctatus) did not contain unacceptable levels of arsenic. These results indicate that arsenic contaminates some food items in Bangladesh. Further studies with larger samples are needed to demonstrate the extent of arsenic contamination of food in Bangladesh.  相似文献   

18.
随着太湖水体富营养化程度的不断加剧,建立安全、稳定、可靠的应急备用水源日益重要。利用2005~2009年苏州地区地下水水质连续监测和补充监测资料,对第Ⅱ承压含水层进行了应急利用(生活饮用和工业利用)的水质适宜性和安全性评价分析。研究结果表明:第Ⅱ承含水层主要水化学类型为Na-HCO3、Ca-HCO3和Na-CaHCO3型,水质总体稳定,年际差异很小;地下水水质指数(WQI)均值较低(位于49.98~68.75之间),地下水没有受到有机物污染,可作为应急利用水源;WQI的水质指标贡献率表明,As、Fe、pH和Mn指标的贡献率最大,局部区域As、Fe、Mn及氨氮和亚硝酸盐含量较高,应急利用时应进行处理。朗格里尔饱和指数(LSI)和拉森比(LnR)评价结果表明,该水源易结垢,具有轻微腐蚀倾向,作为工业备用水源时应进行适当的处理。为苏州地区地下水应急水源建设和安全利用提供了科学依据和参考。  相似文献   

19.
The Rio Grande located along the US-Mexico border is affected by anthropogenic activities along its geographical course. Runoff and wind deposition of smelting residues may contribute to the pollution of the Rio Grande in the El Paso-Ciudad Juarez area. Few studies have addressed the presence or impacts of heavy metals or arsenic in this ecosystem. This study reports a survey of heavy metals (Cr, Cu, Cd, Ni, Pb, and Zn) and arsenic (As) in water and sediments of the Rio Grande collected from seven sites in the El Paso-Juarez region. Since water quality influences metal content in water, physical (temperature, flow and conductivity), and chemical (pH, dissolved oxygen, nitrates, alkalinity, and water hardness) parameters were measured at each site. Arsenic and heavy metal levels were determined using Inductively Couple Plasma (ICP) emission spectroscopy following EPA procedures. Zinc and lead were found as both total and dissolved metals in most of the samples, with concentrations of total recoverable metals reaching up to 105 and 70 microg/l, respectively. Most metals were found in sediment samples collected from four of seven sites. The highest Cu concentration (35 mg/l) was found at the American Dam site. Concentrations of metals found through this survey will be used as a reference for future studies in monitoring arsenic, heavy metals, and their impacts in the Rio Grande.  相似文献   

20.
222Rn, 226Ra, 228Ra and U were determined in a total of 552 groundwater samples collected throughout Fujian Province of China. The geometric mean concentrations of 222Rn, 226Ra, 228Ra and total U in the groundwater were 147.8 kBq m-3, 12.7 Bq m-3, 30.2 Bq m-3 and 0.54 microgram kg-1, respectively. High groundwater 222Rn was explained by the predominantly granitic rock aquifers in Fujian. A lifetime risk of 1.7 x 10(-3) was estimated for the ingestion of groundwater 222Rn. High ratios of 228Ra to 226Ra contents (geometric mean of 2.4) and their disproportion suggest that 228Ra should also be measured in the assessment of population doses from drinking water in the regions of high rock or soil 232Th. No significant correlation between the 222Rn concentrations in groundwater and air was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号