首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to investigate the effects of earthworm density on the availability of nutrients and heavy metals in metal contaminated soils. Pb/Zn mine tailings were mixed throughly with a red yellow podzolic soil at the ratio (w/w) of 75:25. Earthworms (Pheretima sp.) were introduced to the mixture at four different densities, zero, three, six and nine individuals per pot planted with ryegrass (Loliun multiflorum). The results indicated that earthworm activity significantly enhanced ryegrass shoot biomass. However, as denser earthworm population was introduced, shoot biomass tended to decrease. Earthworm activity significantly increased soil pH and availability of N, P and K in the tailings and soil mixture. There was a general tendency that uptake of Zn by ryegrass increased after earthworm inoculation, although the increase in extractable Zn in tailings and soil mixture was not significant. On the contrary, there seemed to be a lower uptake of Pb by ryegrass under earthworm inoclation, despite the fact that higher extractable Pb concentrations were observed. The present project indicated that the improved growth of ryegrass was due to improved nutrient availability and other soil conditions, by inoculation of earthworms at an appropriate rate. Further studies are needed to illustrate the relationship between metal availability and earthworm activity in the field.  相似文献   

2.
Uranium (U) tailings pose environmental risks and call for proper remediation. In this paper medic and ryegrass plants were used as host plants to examine whether inoculation with an AM fungus, Glomus intraradices, would help phytostabilization of U tailings. The need of amending with uncontaminated soil for supporting plant survival was also examined by mixing soil with U tailing at different mixing ratios. Soil amendment increased plant growth and P uptake. Ryegrass produced a more extensive root system and a greater biomass than medic plants at all mixing ratios. Medic roots were extensively colonized by G. intraradices whereas ryegrass were more sparsely colonized. Plant growth was not improved by mycorrhizas, which, however, improved P nutrition of medic plants. Medic plants contained higher U concentrations and showed higher specific U uptake efficiency compared to ryegrass. In the presence of U tailing, most U had been retained in plant roots, and this distribution pattern was further enhanced by mycorrhizal colonization. The results suggest a role for AM fungi in phytostabilization of U tailings.  相似文献   

3.
A pot experiment was conducted to study the influence of elemental sulphur (S) on solubility of soil Pb, Zn and Cd and uptake by maize (Zea mays L.). Two rates of elemental sulphur (S) applied at 0 (S0) and 200 (S200) mmol kg(-1) soil with three rates of each heavy metal at Pb, 0 (Pb0), 200 (Pb200), 400 (Pb400) mg kg(-1) soil, Zn, 0 (Zn0), 100 (Zn100), 200 (Zn200) mg kg(-1) soil and Cd, 0 (Cd0), 50 (Cd50), 100 (Cd100) mg kg(-1) soil, respectively. The result showed that with S application at 200 mmol S kg(-1), soil pH decreased about 0.3 unit and the solubility of the Zn and Cd was significantly increased, but the solubility of Pb had no significant influence. The concentration of Pb, Zn and Cd in maize shoots and roots were increased with increasing rates of heavy metals. However, the concentration of Zn and Cd in shoots and roots were higher with application of S rather than without S but no significant difference was found for Pb. The highest concentration of Zn in the shoots was 2.3 times higher with application of S rather than without at the same rate of Zn, 200 mg kg(-1). Plant biomass was also significantly affected by the application of S and of heavy metals. With heavy metal addition, the shoot and root biomass were decreased with the rates of those of heavy metals increased either with or without application of S. However, the shoot biomass was significantly decreased with S application at the same rate of heavy metals except that with Zn addition. The removal of Cd and Pb by maize uptake and accumulation with application of S had no significant increase compared to that without, but the removal Zn by maize uptake from the soil increased by application of S, 90.9 microg plant(-1) contrast to 25.7 microg plant(-1) at Zn200 within a growth period of only 40 days.  相似文献   

4.
Abstract

A pot experiment was conducted to investigate the influence of citric and oxalic acids effect on Pb and Zn uptake by corn and winter wheat. The experiment was employed with citric acid (CA) applied at 3 rates (0, 1.5 and 3.0 mmol kg?1 soil), oxalic acid (OA) at 3 rates (0, 1.5 and 3.0mmol kg?1 soil) and citric acid combined with oxalic acid (1.5 mmol citric acid combined with 1.5 mmol oxalic acid kg?1). Two types of soil were chose in the experiment. One was collected from the agricultural soil near a battery-recycling factory in Anhui province, China (site A) and the other was collected from a Pb-Zn mine residues in Hunan province, China (site B). The results showed that soil pH varied with the different treatment of citric and oxalic acids. However, there were no differences in all the treatments. 3.0mmol CA kg?1 soil addition significantly increased the concentrations of the CaCl2-extractable Pb and Zn and other treatments have no significantly increased. The highest shoot concentrations of Pb and Zn in both species occurred in application of 3.0 mmol CA/kg?1 soil and shoot concentrations of Pb and Zn in both species were significantly higher than the controls in this treatment. Shoot yields declined with application of citric and oxalic acids, indicating that the plants were sensitive to the toxicity of the metals or the amendments. The highest Pb uptake values by maize and wheat werell2.3 and 77.2 μg pot1 in soil of site A, and occurred with the control and 3.0 mmol CA/kg?1 soil respectively.  相似文献   

5.
Legumes are ideal for revegetation of metal-mined wastelands which lack nitrogen (N). A greenhouse study was conducted to investigate the feasibility of using Sesbania rostrata and S. cannabina for the reclamation of lead/zinc (Pb/Zn) mine tailings and to evaluate the effects of organic amendment using sewage sludge (0%, 25%, 50%, and 75%, v/v). The results showed that both species could continue to grow on the highly toxic tailings substrata for at least 80 days, although their growth suffered from adverse effects. That S. rostrata with stem and root nodules had better growth (biomass, growth rates, and biomass of nodules) than S. cannabina suggested that S. rostrata is a better choice as a pioneer species for revegetation of the mine tailings. Stem nodules had less obvious adverse effects imposed by tailings than root nodules. Application of sewage sludge increased contents of total carbon (C), N, phosphorus (P), and potassium (K), and reduced total Zn, Pb, Cd, and DTPA-extractable Pb and Cd in tailings substrata. These, in turn, reduced metal (Zn, Pb, and Cd) uptake and accumulation in plant tissues, and improved plant growth performance, including biomass, growth rates, stem nodulation. Fifty percent (v/v) of sludge application rate was the best loading rate for plant growth.  相似文献   

6.
Both soil and plant samples of nine different plant species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed for the plant uptake and translocation of 238U, 226Ra and 232Th. Substantial differences were observed in the soil-plant transfer factor (TF) among these radionuclides and plant species. Lupine (Lupinus albus) exhibited the highest uptake of 238U (TF value of 3.7x10(-2)), while Chinese mustard (Brassica chinensis) had the least (0.5x10(-2)). However, in the case of 226Ra and 232Th, the highest TFs were observed for white clover (Trifolium pratense) (3.4x10(-2)) and ryegrass (Lolium perenne) (2.1x10(-3)), respectively. 232Th in the tailings/soil mixture was less available for plant uptake than 226Ra or 238U, and this was especially evident for Chinese mustard and corn (Zea mays). The root/shoot (R/S) ratios obtained for different plants and radionuclides shown that Indian mustard had the smallest R/S ratios for both 226Ra (5.3+/-1.2) and 232Th (5.3+/-1.7), while the smallest R/S ratio for 238U was observed in clover (2.8+/-0.9).  相似文献   

7.
The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil.  相似文献   

8.
A pot experiment was conducted to investigate the influence of citric and oxalic acids effect on Pb and Zn uptake by corn and winter wheat. The experiment was employed with citric acid (CA) applied at 3 rates (0, 1.5 and 3.0 mmol kg-1 soil), oxalic acid (OA) at 3 rates (0, 1.5 and 3.0mmol kg-1 soil) and citric acid combined with oxalic acid (1.5 mmol citric acid combined with 1.5 mmol oxalic acid kg-1). Two types of soil were chose in the experiment. One was collected from the agricultural soil near a battery-recycling factory in Anhui province, China (site A) and the other was collected from a Pb-Zn mine residues in Hunan province, China (site B). The results showed that soil pH varied with the different treatment of citric and oxalic acids. However, there were no differences in all the treatments. 3.0mmol CA kg-1 soil addition significantly increased the concentrations of the CaCI2-extractable Pb and Zn and other treatments have no significantly increased. The highest shoot concentrations of Pb and Zn  相似文献   

9.
An trench profile method was used to study seasonal variation of root ecological characteristics of Alhagi sparsifolia Shap. seedlings under different irrigation treatments. The results indicated the following: (1) Root morphology: under excellent soil moisture conditions, A. sparsifolia seedlings developed many horizontal roots and root sprouts to compete for light; but under poor soil moisture, the vertical root system expanded its resource space into deeper soil. Plasticity of root morphology is an important strategy to capture water and adapt to the hyperarid environment. (2) Root/shoot ratio: root/shoot ratio increased with declining soil moisture, and this trend was more obvious later in the growing season. Increase of root/shoot ratio is a strategy for adapting to drought. (3) Growth of root system: The seedlings prefer to develop roots in shallower surface layers with less water availability. The growth depth and vertical growth rate of roots increased with decreased soil moisture. (4) Accumulation of root biomass: biomass and surface area of the root system decreased with increased soil depth, with the roots distributed in an ??inverted pyramid?? in vertical section view. The formation of root biomass conformed to a logistic ??slow-quick-slow?? growth curve, and total biomass decreased with intensity of soil drought. The findings will provide data useful for effective restoration of A. sparsifolia and better utilization of water resources in hyperarid regions.  相似文献   

10.
Leaf samples of six plant species collected from locations near the Al-fabrication plants in Sai Kung, Hong Kong were found to be heavily contaminated by Al, Cd, Pb, Ni, Cu and Zn, as determined by inductively — coupled plasma emission spectrophotometer (ICP). Studies using scanning electron microscope incorporated with X-ray microanalyzer showed that significant amounts of dust, with elevated concentrations of heavy metals, were deposited on the leaf surface. The stomatal pores were partially plugged and the guard cells were distorted. The amount of dust deposition and metal contamination varied significantly among different species. Lantana camara had the highest concentrations of all metals. Washing with deionized water could remove the surficial dust particles and reduce the metal contamination, with a degree of effectiveness depending on plant species and metal species. About 50% of Al and other metals were removed from leaves of L. camara and Fiscus variegata by washing, whereas only 20% removal was recorded in Bauhina variegata, the species had the least dust deposition. The soil samples and Al wastes collected from the same sites also exhibited higher values of total metal concentrations than the control. However, the contents of extractable metals were extremely low and were almost below the limits of detection. Experimental data further suggested that the source of leaf metals was mainly accumulated from metal-enriched aerosols, either from Al-fabrication plants or from automobile exhausts, and contribution from soil was relatively unimportant.  相似文献   

11.
A commercial formulation of composted municipal solid wastes (MSW) was used for amending soil at 0, 50, 100, 150, 200 and 250 kg ha−1 in which wheat had been grown (field experiments) and element residues of amended soil and plant parts were enumerated. MSW amendment caused a significant improvement in soil quality. Growth (shoot length, leaf number, leaf area, tiller number, plant dry weight and chlorophyll contents of leaves) and yield (length of panicle, number of panicles per plant and grain yield per plant) of wheat increased gradually up to the MSW-amendment level of 200 kg ha−1. Elements, Ni, Zn, Cu, Cd, Cr, and Pb accumulated in plants from MSW amended soil, but the degree of metal accumulation was the least in seeds in comparison to other plant parts (root, stem and leaf). Moreover, Ni, Zn, Cd and Pb, were in high concentration in all plant parts. It is recorded that the level of 200 kg ha−1 MSW amendment caused better growth and yield of wheat, but progressive levels of metal accumulation in plant parts were recorded due to increase in amendment levels. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

12.
A revegetation trial was conducted to evaluate the feasibility of growing a legume species, Prosopis juliflora L., on fly ash ameliorated with combination of various organic amendments, blue-green algal biofertilizer and Rhizobium inoculation. Significant enhancements in plant biomass, photosynthetic pigments, protein content and in vivo nitrate reductase activity were found in the plants grown on ameliorated fly ash in comparison to the plants growing in unamended fly ash or garden soil. Higher growth was obtained in fly ash amended with blue-green algae (BGA) than farmyard manure or press mud (PM), a waste from sugar-processing industry, due to the greater contribution of plant nutrients, supply of fixed nitrogen and increased availability of phosphorus. Nodulation was suppressed in different amendments of fly ash with soil in a concentration-duration-dependent manner, but not with other amendments. Plants accumulated higher amounts of Fe, Mn, Cu, Zn and Cr in various fly ash amendments than in garden soil. Further, inoculation of the plant with a fly ash tolerant Rhizobium strain conferred tolerance for the plant to grow under fly ash stress conditions with more translocation of metals to the above ground parts. The results showed the potential of P. juliflora to grow in plantations on fly ash landfills and to reduce the metal contents of fly ash by bioaccumulation in its tissues.  相似文献   

13.
The acid-forming potential of lead/zinc (Pb/Zn) mine tailings at Lechang City of Guangdong Province was studied using both net acid generation (NAG) and acid-base accounting (ABA) methods. The pyritic and total sulfur contents of the tailings were 12.6% and 18.7%, respectively. The mean acid neutralization capacity (ANC) was 63.5 kg H2SO4/t while three oxidized tailings samples had an ANC less than zero. The NAG and net acid production potential (NAPP) values were 220 and 326 kg H2SO4/t, and both the NAG and NAPP results indicated that the tailings had a high acid-forming potential. NAG was more accurate than NAPP in predicting acid-forming potential of the tailings due to uncompleted oxidization of pyritic sulfur. Analysis of samples from two profile tests indicated that acidification mainly occurred at the surface (0-20 cm) and had little effects at deep layer of the tailings. Total concentrations of Pb, Zn, Cu, and Cd were increased greatly with depth at the acidified tailings profile, while heavy metal concentrations at different depths of nonacidified tailings profile were similar. The results indicated that depletion of heavy metals at the acidified surface was due to acidification. The diethylenetetramine pentaacetic acid (DTPA)-extractable Pb, Zn, Cu, and Cd concentrations of acidified tailings surface (0-20 cm) were significantly higher than those of nonacidified tailings, which further revealed that acidification enhanced the mobility of heavy metals in the tailings.  相似文献   

14.
The potential for using earthworms (Eisenia fetida) to improve fertility and reduce copper and cadmium availability in sewage sludge was tested by laboratory incubation experiments. Results comparing sewage sludge with and without earthworm treatment showed that earthworm activity decreased the contents of organic matter, total nitrogen, but increased the contents of available nitrogen and phosphorus and had no significant effect on the contents of total phosphorus, total potassium and available potassium. After incubation of the sewage sludge with earthworms for 60 days, the contents of Cu and Cd in the earthworms increased with the increase of additional Cu up to 250 mg kg(-1) and Cd up to 10 mg kg(-1). Bioconcentration factors (BCF) were higher than 1 only for Cd when the addition rate was lower than 5 mg kg(-1), which indicates that the earthworms can only accumulate Cd when the concentration of Cd is low in sewage sludge. Bioavailability of Cd and Cu was evaluated by applying sewage sludge with and without earthworm treatment to soil and then growing cabbage plants. The results showed that earthworm treatment increased the biomass of cabbage and decreased the bioaccumulation of Cd and Cu in the cabbage plants.  相似文献   

15.
A sequential extraction method was used to determine chemical forms of Cu, Zn, Ni and Cd in fly ash-stabilized sludge. A loamy acid soil amended with fly ash-stabilized sludge was used to grow corn under greenhouse conditions. Sewage sludge amended with coal fly ash can reduce the availability of Cu, Zn, Ni and Cd in the sludge. Increasing fly ash amendment rate significantly reduced DTPA-extractable Cu, Zn, Ni and Cd concentrations. Percentages of Cu, Zn and Ni in residual fraction increased with an increase in fly ash amendment rates. Majority of Cu was associated with organic form, but Zn and Ni were associated with Fe-Mn oxide and residual forms. Addition of ash-amended sludge to soil significantly increased dry mass of corn. With coal fly ash amendment rate increasing, concentrations of Zn and Cu in shoot tissues of corn decreased significantly, but concentrations of Cd and Ni did not change significantly. Significant correlations were found between concentrations of Cu and Zn in corn shoot and oxide and total Cu fractions, and all chemical fractions of Zn in fly ash-stabilized sludge, respectively. Hence, ash amendment significantly reduced the availability of heavy metals by chemical modification of their chemical speciation into less available forms.  相似文献   

16.
The relationship of some dissolved trace metals (Al, Cr, Mn, Zn, and Pb) with one another and to dissolved phosphate and nitrate in a freshwater aquatic system at Flic en Flac and Grand River North West (GRNW) in Mauritius (1850 km2, 20 degrees S and 57 degrees E, Western Indian ocean) is reported following trace metal determination using inductively coupled plasma mass spectrometry (ICP-MS). Dissolved Al (<200 ng ml(-1)), Cr (<50 ng ml(-1)), Mn (<50 ng ml(-1)), Zn (< 100 ng ml(-1)), and Pb (<50 ng ml(-1)) upstream, downstream GRNW and in the marshes and rivulet at Flic en Flac were found to be below the recommended EEC maximum admissible concentrations and within the ambient drinking water quality standards in Mauritius. Dissolved Pb was significantly positively correlated to both dissolved Cr and Zn suggesting that the cycling for dissolved Pb is linked to the cycling of both dissolved Cr and Zn along GRNW. The common influential cycling of Pb and Zn was further reinforced as both dissolved Pb and Zn were significantly positively correlated to dissolved phosphate, which suggested a biological role in the cycling of Zn and Pb. The role of biological activity or adsorption to biological systems in Pb cycling along GRNW is further suggested as dissolved Pb was significantly correlated to dissolved nitrate. The apparent absence of the dissolved Al, Cr, and Mn with dissolved nitrate and phosphate could be attributed to factors such as the lower sensitivity of the GRNW to metal uptake during biological activity during the time frame considered. The cycling of dissolved Al and Mn was also not linked to the cycling of Cr, Zn, and Pb as no significant correlation was found along GRNW.  相似文献   

17.
Spills in the nuclear fuel cycle have led to soil contamination with uranium. In case of small contamination just above release levels, low-cost yet sufficiently efficient remedial measures are recommended. This study was executed to test if low-level U contaminated sandy soil from a nuclear fuel processing site could be phytoextracted in order to attain the required release limits. Two soils were tested: a control soil (317 Bq 238U kg(-1)) and the same soil washed with bicarbonate (69 Bq 238U kg(-1)). Ryegrass (Lolium perenne cv. Melvina) and Indian mustard (Brassica juncea cv. Vitasso) were used as test plants. The annual removal of soil activity by the biomass was less than 0.1%. The addition of citric acid (25 mmol kg(-1)) 1 week before the harvest increased U uptake up to 500-fold. With a ryegrass and mustard yield of 15,000 and 10,000 kg ha(-1), respectively, up to 3.5% and 4.6% of the soil activity could be removed annually by the biomass. With a desired activity reduction level of 1.5 and 5 for the bicarbonate-washed and control soil, respectively, it would take 10-50 years to attain the release limit. However, citric acid addition resulted in a decreased dry weight production.  相似文献   

18.
A 6-month soil column experiment was conducted to compare the upward migration and plant uptake of radiochlorine and radioiodine from shallow, near-surface contaminated water tables. Both fixed and fluctuating water tables were studied. After 6 months, (36)Cl activity concentrations were relatively uniform throughout the soil profile apart from an accumulation at the soil surface, which was especially marked under a fluctuating water table scenario. In contrast, (125)I (a surrogate for (129)I) tended to accumulate at the boundary between the anoxic conditions at the base of the column and the oxic conditions above, due to its redox-dependent sorption behaviour. The uptake of (36)Cl by perennial ryegrass was much greater than that of (125)I due to its greater migration into the rooting zone and its ready availability in soil solution. In the context of radioactive waste disposal, where these radionuclides may potentially be released into groundwater, (36)Cl would be expected to present a greater potential for contamination of the biosphere than (129)I.  相似文献   

19.
Harm of thorium to living organisms is governed by its bioavailability. Thorium bioavailability in the soil-plant system of Baotou rare earth industrial area was studied using pot experiments of wheat and single extraction methods. The effects of wheat growth stage and phosphate on thorium bioavailability were also investigated. Based on extractabilities of various extraction methods (CaCl2, NH4NO3, EDTA, HOAc) and correlation analysis of thorium uptake by wheat plant and extractable thorium, a mixture of 0.02 M EDTA + 0.5 M NH4OAc (pH 4.6) was found suitable for evaluation of thorium bioavailability in Baotou soil, which could be predicted quantitatively by multiple regression models. Because of differences of wheat root activities, thorium bioavailability in rhizosphere soil was higher than in bulk soil at tillering stage, but the reverse occurred at jointing stage. Phosphate addition induced the mineralization of soluble thorium by forming stable thorium phosphate compounds, and reduced thorium bioavailability in soil.  相似文献   

20.
A model predicting 137Cs uptake in plants was applied on data from artificially contaminated lysimeters. The lysimeter data involve three different crops (beans, ryegrass and lettuce) grown on five different soils between 3 and 5 years after contamination and where soil solution composition was monitored. The mechanistic model predicts plant uptake of 137Cs from soil solution composition. Predicted K concentrations in the rhizosphere were up to 50-fold below that in the bulk soil solution whereas corresponding 137Cs concentration gradients were always less pronounced. Predictions of crop 137Cs content based on rhizosphere soil solution compositions were generally closer to observations than those based on bulk soil solution composition. The model explained 17% (beans) to 91% (lettuce) of the variation in 137Cs activity concentrations in the plants. The model failed to predict the 137Cs activity concentration in ryegrass where uptake of the 5-year-old 137Cs from 3 soils was about 40-fold larger than predicted. The model generally underpredicted crop 137Cs concentrations at soil solution K concentration below about 1.0 mM. It is concluded that 137Cs uptake can be predicted from the soil solution composition at adequate K nutrition but that significant uncertainties remain when soil solution K is below 1 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号