首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The spatial and temporal distributions of the anthropogenic radionuclides 137Cs and 90Sr, originating from nuclear bomb testing, the Sellafield reprocessing plant in the Irish Sea (UK), and from the Ob and Yenisey river discharges to the Arctic Ocean, have been simulated using the global version of the Miami Isopycnic Coordinate Ocean Model (MICOM). The physical model is forced with daily atmospheric re-analysis fields for the period of 1948–1999. Comparison of the temporal evolution of the observed and the simulated concentrations of 90Sr has been performed in the Kara Sea. The relative contributions of the different sources on the temporal and spatial distributions of the surface 90Sr are quantified over the simulated period. It follows that the Ob river discharge dominated the surface 90Sr over most of the Arctic Ocean and along the eastern and western coasts of Greenland before 1960. During the period of 1980–1990, the atmospheric fallout and the Ob river discharge were equally important for the 90Sr distribution in the Arctic Ocean. Furthermore, an attempt has been made to explore the possible dispersion of accidental released 90Sr from the Ob and Yenisey rivers under a global warming scenario (2 × CO2). The difference between the present-day and the global warming scenario runs indicates that more of the released 90Sr from the Ob and Yenisey rivers is confined to the Arctic Ocean in the global warming run, particularly in the near coastal, non-European part of the Arctic Ocean.  相似文献   

2.
Exposure to ambient air pollution (AP) exposure has been linked to type 2 diabetes (T2D) risk. Evidence on the impact of T2D genetic variants on AP susceptibility is lacking. Compared to single variants, joint genetic variants contribute substantially to disease risk. We investigated the modification of AP and diabetes association by a genetic risk score (GRS) covering 63 T2D genes in 1524 first follow-up participants of the Swiss cohort study on air pollution and lung and heart diseases in adults. Genome-wide data and covariates were available from a nested asthma case-control study design. AP was estimated as 10-year mean residential particulate matter < 10 μm (PM10). We computed count-GRS and weighted-GRS, and applied PM10 interaction terms in mixed logistic regressions, on odds of diabetes. Analyses were stratified by pathways of diabetes pathology and by asthma status. Diabetes prevalence was 4.6% and mean exposure to PM10 was 22 μg/m3. Odds of diabetes increased by 8% (95% confidence interval: 2, 14%) per T2D risk allele and by 35% (− 8, 97%) per 10 μg/m3 exposure to PM10. We observed a positive interaction between PM10 and count-GRS on diabetes [ORinteraction = 1.10 (1.01, 1.20)], associations being strongest among participants at the highest quartile of count-GRS [OR: 1.97 (1.00, 3.87)]. Stronger interactions were observed with variants of the GRS involved in insulin resistance [(ORinteraction = 1.22 (1.00, 1.50)] than with variants related to beta-cell function. Interactions with count-GRS were stronger among asthma cases. We observed similar results with weighted-GRS. Five single variants near GRB14, UBE2E2, PTPRD, VPS26A and KCNQ1 showed nominally significant interactions with PM10 (P < 0.05). Our results suggest that genetic risk for T2D may modify susceptibility to air pollution through alterations in insulin sensitivity. These results need confirmation in diabetes cohort consortia.  相似文献   

3.
A dynamic linear compartment model of the global iodine cycle has been developed for the purpose of estimating radiological impacts on the world population from releases of 129I to the environment. The time-invariant fractional transfer rates, which describe the transport of 129I between environmental compartments comprising the atmosphere, hydrosphere, lithosphere, and terrestrial biosphere, are estimated from an analysis of available data on concentrations for naturally occurring stable iodine and data on the global hydrologic cycle. The global radiological impacts on man from a given release of 129I are estimated from the calculated compartment inventories as a function of time and models for the intake of iodine by a reference adult. For a constrant population of 12.2 billion, the estimated worldwide complete population dose commitment to the thyroid is 76 man-Sv/GBq (2.8 × 105 man-rem/Ci) released. Estimated values of the incomplete population dose commitment at various times after a global-scale release to the atmosphere are also presented.  相似文献   

4.
Reconstruction of cropland cover is crucial for assessing human impact on the environment. In this study, based on existing studies concerning historical cropland, population data and government inventories, we obtained a provincial cropland area dataset of China for 1661–1996 via collection, revision and reconstruction. Then, the provincial cropland area was allocated into grid cells of 10 × 10 km depending on the land suitability for cultivation. Our reconstruction indicates that cropland increased from ~55.5 × 104 km2 in 1661 to ~130.0 × 104 km2 in 1996. From 1661 to 1873, cropland expanded tremendously in the Sichuan Basin, and land reclamation was greatly enhanced in North China Plain. For 1873–1980, agricultural development occurred primarily in northeastern China. After 1980, most provinces in the traditionally cultivated region of China experienced decreases in cropland area. In comparison with satellite-based data for 2000, we found that our reconstruction generally captures the spatial distribution of cropland. Also, differences are mostly <20 % (?20 to 20 %). Compared with HYDE 3.1 dataset, which is designed for the global scale, our model is more suitable for reconstructing the historical crop cover of China at 10 × 10 km grid scale. Our reconstruction can be used in climate models to study the impact of crop cover change on the climate and carbon cycle.  相似文献   

5.
To study the Pu concentration and isotope ratio distributions present in China, the 239+240Pu total activities and 240Pu/239Pu atom ratios in core soil samples from Hubei Province in central China were investigated using Accelerator Mass Spectrometry (AMS). The activities ranged from 0.019 to 0.502 mBq g−1 and the 239+240Pu inventories of 45 and ∼55 Bq m−2 agree well with that expected from global fallout. The 240Pu/239Pu atom ratios in the soil ranged from 0.172 to 0.220. The ratios are similar to typical global fallout values. Hence, any close-in fallout contribution from the Chinese nuclear weapons tests, mainly conducted in the 1970s, must have either been negligible or had a similar 240Pu/239Pu ratio to that of global fallout. The top 10 cm layer of the soil contributes ∼90% of the total inventory and the maximum concentrations appeared in the 2-4 cm or 4-6 cm layers. It is suggested that climatic conditions and organic content are the two main factors that affect the vertical migration of plutonium in soil.  相似文献   

6.
The broad climatological features associated with the Asian monsoon circulation, including its mean state and intraseasonal and interannual variability over the Indian subcontinent as simulated in the National Center for Atmospheric Research (NCAR) global coupled climate system model (CSM) in its control reference experiment, are presented in this paper. The CSM reproduces the seasonal cycle as well as basic observed patterns of key climatic parameters reasonably well in spite of some limitations in simulation of the monsoon rainfall. However, while the seasonality in rainfall over the region is simulated well, the simulated area-averaged monsoon rainfall is underestimated to only about 60% of the observed rainfall. The centers of maxima in simulated monsoon rainfall are slightly displaced southward as compared to the climatological patterns. The cross-equatorial flow in simulated surface wind patterns during summer is also stronger than observed with an easterly bias. The transient experiment with a 1% per year compound increase in CO2 with CSM suggests an annual mean area-averaged surface warming of about 1.73 °C over the region at the time of CO2 doubling. This warming is more pronounced in winter than during the monsoon season. A net increase in area-averaged monsoon rainfall of about 1.4 mm day–1, largely due to increased moisture convergence and associated convective activity over the land, is obtained. The enhanced intraseasonal variability in the monsoon rainfall in a warmer atmosphere is confined to the early part of the monsoon season which suggests the possibility of the date of onset of summer monsoon over India becoming more variable in future. The enhanced interannual and intraseasonal variability in the summer monsoon activity over India could also contribute to more intense rainfall spells over the land regions of the Indian subcontinent, thus increasing the probability of extreme rainfall events in a warmer atmosphere. Electronic Publication  相似文献   

7.
Ambient PM2.5 pollution is a substantial threat to public health in global megacities. This paper reviews the PM2.5 pollution of 45 global megacities in 2013, based on mass concentration from official monitoring networks and composition data reported in the literature. The results showed that the five most polluted megacities were Delhi, Cairo, Xi'an, Tianjin and Chengdu, all of which had an annual average concentration of PM2.5 greater than 89 μg/m3. The five cleanest megacities were Miami, Toronto, New York, Madrid and Philadelphia, the annual averages of which were less than 10 μg/m3. Spatial distribution indicated that the highly polluted megacities are concentrated in east-central China and the Indo-Gangetic Plain. Organic matter and SNA (sum of sulfate, nitrate and ammonium) contributed 30% and 36%, respectively, of the average PM2.5 mass for all megacities. Notable seasonal variation of PM2.5 polluted days was observed, especially for the polluted megacities of China and India, resulting in frequent heavy pollution episodes occurring during more polluted seasons such as winter. Marked differences in PM2.5 pollution between developing and developed megacities require more effort on local emissions reduction as well as global cooperation to address the PM2.5 pollution of those megacities mainly in Asia.  相似文献   

8.
The total 239+240Pu activities and 240Pu/239Pu atom ratios in surface soil samples (0–5 cm) in the Kumtag Desert in western Gansu Province, and in a soil core sample in Lanzhou were investigated using a sector-field ICP-MS. In the surface soil samples, 239+240Pu activities in fine particles (<150 μm) were 1.3–2.1 times of those in coarse particles (150 μm–1 mm) which ranged from 0.005 to 0.157 mBq/g. Atom ratios of 240Pu/239Pu in the surface soils ranged from 0.168 to 0.192 with a mean of 0.182 ± 0.008. The mean ratio was similar to the typical global fallout value although the Kumtag Desert was believed to have received close-in fallout derived from Chinese nuclear weapons tests mainly conducted in the 1970s. Furthermore, the mean 240Pu/239Pu atom ratio observed in the soil core sample in Lanzhou was similar to the typical global fallout value. In the soil core sample, 239+240Pu activities in the various layers ranged from 0.012 to 0.23 mBq/g, and the inventory of 239+240Pu (32.4 Bq/m2, 0–23 cm) was slightly lower than that expected from global fallout (42 Bq/m2) at the same latitude. Rapid downward migration of Pu isotopes was observed in Lanzhou soil core sample layers. The contribution of the 10-cm deep top layers of surface soils to total inventory was only 17%, while the contribution of deeper layers (10–23 cm) was as high as 83%. The 239+240Pu activity levels and 240Pu/239Pu atom ratios in soils in Gansu Province, China are similar to those in atmospheric deposition samples collected in the spring in recent years in Japan.  相似文献   

9.
Excessive nitrogen (N) fertilization in intensive agricultural areas in the Taihu Lake region of East China has resulted in low N utilization efficiency and serious environmental problems, giving rise to the need for an urgent reduction in the N fertilization rate. However, no holistic evaluations of rice (Oryza sativa L.) yield effect and environmental effects of N fertilization have been conducted when recommending an optimal N rate. The current study provides an economic indicator and an evaluation model to account for the environmental effects of different N losses after N fertilizer application in the ecological and economic N rate for one rice season in the Taihu Lake region. Based on the assembled data and economic index, a general economic evaluation model to measure efficiently the cascading costs of the chemical N cycle at the regional scale was developed. Thereafter, fertilizer-stimulated benefit curves and fertilizer-induced cost curves were generated to determine an economically and ecologically optimal N application rate. The results revealed that the maximum net benefits were 3,123 yuan ha−1 at 202 kg N ha−1 for one rice season in the Taihu Lake region. Additional N application up to a rate of 263 kg N ha−1 would increase rice production, but the increase in the total marginal costs would be slightly greater than the increase in marginal benefits. Among the marginal costs, the fertilizer and acidification costs were the greatest expenses, amounting to 1,716 yuan at 263 kg N ha−1, followed by eutrophication and global warming costs. When compared with the conventional N fertilization rate, this recommended rate could decrease the amount of N applied to rice from 10 to 40%, thereby, enabling optimum economic and ecological results.  相似文献   

10.
Recent advancements in analytical technology make it possible for artificial radionuclides released from nuclear explosions to be detected in Arctic ice core layers. The fission product, 137Cs, and the unexpended fission material, 239+240Pu, originating from the Nagasaki A-bomb of August 1945, were measured by collecting 10 ice cores on the Agassiz ice cap, Ellesmere Island, Canada. The deposition rates were 0·020 mBq cm-2 for 137Cs and 0·0016 mBq cm-2 for 239+240Pu, originating from Nagasaki. Assuming the radionuclides, excluding the amount fissioned from the explosion and deposi-ted as local fallout, are deposited evenly throughout the Northern Hemisphere, 67% of the expected amount of 137Cs reached the Arctic while 1·1% of 239+240Pu reached the Arctic. The results suggest that different transport mechanisms exist for various contaminants in the global transport system.  相似文献   

11.
The results of a 21 month sampling program measuring tritium in tree transpirate with respect to local sources are reported. The aim was to assess the potential of tree transpirate to indicate the presence of sub-surface seepage plumes.Transpirate gathered from trees near low-level nuclear waste disposal trenches contained activity concentrations of 3H that were significantly higher (up to ∼700 Bq L−1) than local background levels (0-10 Bq L−1). The effects of the waste source declined rapidly with distance to be at background levels within 10s of metres. A research reactor 1.6 km south of the site contributed significant (p < 0.01) local fallout 3H but its influence did not reach as far as the disposal trenches.The elevated 3H levels in transpirate were, however, substantially lower than groundwater concentrations measured across the site (ranging from 0 to 91% with a median of 2%). Temporal patterns of tree transpirate 3H, together with local meteorological observations, indicate that soil water within the active root zones comprised a mixture of seepage and rainfall infiltration. The degree of mixing was variable given that the soil water activity concentrations were heterogeneous at a scale equivalent to the effective rooting volume of the trees. In addition, water taken up by roots was not well mixed within the trees. Based on correlation modelling, net rainfall less evaporation (a surrogate for infiltration) over a period of from 2 to 3 weeks prior to sampling seems to be the optimum predictor of transpirate 3H variability for any sampled tree at this site.The results demonstrate successful use of 3H in transpirate from trees to indicate the presence and general extent of sub-surface contamination at a low-level nuclear waste site.  相似文献   

12.
We simulated hydrological and biogeochemical responses to logging in a forested watershed to determine the vulnerability and/or resiliency of the forest ecosystems in the Lake Shumarinai Basin in northern Hokkaido, Japan. We used a biogeochemical model (PnET-CN) and a rainfall–runoff model (HYCYMODEL) to predict ecosystem responses. The PnET-CN model simulated well the observed NO3 concentrations in streamwater, particularly at high concentrations during snowmelt; however, the model could not simulate small increases in NO3 during the summer. By considering hydrological processes within the watershed and combining the model with the HYCYMODEL (PnET + HYCYMODEL), the seasonality of streamwater NO3 concentrations was better simulated. Using these models, the long-term effects of logging were simulated for coniferous, deciduous, and mixed forests. NO3 concentrations in streamwater increased in response to the logging disturbance in both coniferous and deciduous forests. In the coniferous forest, NO3 concentrations reached a maximum 10 years after logging, and high concentrations persisted for 30 years. In contrast, NO3 concentrations in the deciduous forest reached a maximum within 3–4 years and recovered to pre-disturbance levels after 15 years. We also used the models to determine the effects of different sizes and types (coniferous, deciduous, and mixed forest) of logging areas on Lake Shumarinai. The model results indicated that large areas of cutting require more than 100 years for complete lake recovery. Whereas the annual discharge to the lake minimally increased, the annual NO3 load greatly increased. Our simulation results elucidate the vulnerability and resiliency of forest ecosystems and provide valuable information for ecosystem management.  相似文献   

13.
基于多领域间影响模型比较计划推荐使用的4个全球气候模式GCM数据(GFDL、Had、IPSL和MIROC),分别驱动SWIM、SWAT、HBV和VIC水文模型模拟长江寸滩站以上流域径流量,研究全球升温1.5℃和2.0℃情景下研究区径流量变化。研究表明:(1)在全球升温1.5℃时,水文模型和GCMs模拟的年径流量增幅分别在 5.5%~8.3%和3.5%~11.4%之间;在全球升温2.0℃时,水文模型模拟的径流量增幅在4.8%~6.7%,IPSL模拟的年径流量呈微弱减少趋势,HAD和MIROC模拟的年径流量分别增加6.7%和19%。来自GCMs的不确定性分别是来自水文模型的2.6和 2.1倍;(2)在两个不同升温条件下,月径流量集合平均的占比与基准期各月径流量的占比表现出高度一致性,但是升温1.5℃和2.0℃时的月最大径流量占比分别为47.8%和40.5%,表明在未来升温时段内,月径流量占比变化并不显著,但是极端月径流的变化较大;(3)全球升温1.5℃时,枯、丰水期日径流量增幅分别为3%和10%,但枯、丰水期径流贡献率变化幅度都不大。全球升温2.0℃时,枯、丰水期增幅分别为3.6%和8%,但枯、丰水期径流贡献率都呈下降趋势。全球升温1.5℃和2.0℃时,50年一遇(P=2%)的洪水流量,将分别比基准期增加26.3%和20.7%。基准期50年一遇的洪水将可能变成20年一遇,多年平均最大日径流量较基准期也有增加。  相似文献   

14.
This paper describes a new method for the determination of nitrite in potable and polluted water, based on the reaction of nitrite with p-nitroaniline to form diazonium salt and its subsequent coupling with diphenylamine in acidic medium. The pink coloured dye formed obeys Beer's law in the range 0.16 to 0.56 μg/ml at λmax = 540 nm. The molar absorptivity and Sandell's sensitivity being 57.5 × 103 lmole?3cm?1 and 0.0008 μg/cm2, respectively. The optimum reaction conditions and other analytical parameters have been studied. Extraction of the dye with chloroform enhances the sensitivity considerably and makes 0.04 μg/ml of nitrite determinable.  相似文献   

15.
Global atmospheric CO2 concentration has increased since the beginning of reliable monitoring in 1958 at a mean rate of about 0.9 ppm CO2/yr. Now, atmospheric CO2 concentration is at 330 ppm. From about 1860 up to 1974, man's intervention in the global carbon cycle caused a likely increase of 76.6 × 1015 gC, corresponding to 36 ppm CO2 in the atmosphere, if a preindustrial content of 294 ppm CO2 or 625.3 × 1015 g C is adopted to be valid. A further rise of atmospheric CO2 seems to be inevitable and probably will be responsible for a climatic warming in the next several decades; therefore, a global examination of carbon reservoirs and carbon fluxes has been undertaken to determine their storage capacity for excess carbon which orginated mainly from burning fossil fuels and from land clearing. During 1860–1974 about 136 × 1015 g C have ben emitted into the atmosphere by fossil fuel combustion and cement production. At present, the emission rate is about 5 × 1015 g C/yr. The worldwide examination of carbon release, primarily by deforestation and soil cultivation since 1860, is estimated to be about 120 × 1015 g C. The net transfer of carbon to the atmosphere owing to man's interference with the biosphere is now believed to be about 2.4 × 1015 g C/yr. An oceanic uptake of roughly 179 × 1015 g C since 1860 is open to discussion. According to the chemical buffering of sea surface water only about 35.5 × 1015 g C could have been absorbed. It is argued, however, that oceanic circulations might have been more effective in removing atmospheric excess carbon of anthropogenic origin.  相似文献   

16.
Historical 239Pu activity concentrations and 240Pu/239Pu atom ratios were determined in skeletons of dated modern corals collected from three locations (Chuuk Lagoon, Ishigaki Island and Iki Island) to identify spatial and temporal variations in Pu inputs to the Northwest Pacific Ocean. The main Pu source in the Northwest Pacific is fallout from atmospheric nuclear weapons testing which consists of global fallout and close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands. PPG close-in fallout dominated the Pu input in the 1950s, as was observed with higher 240Pu/239Pu atom ratios (> 0.30) at the Ishigaki site. Specific fallout Pu contamination from the Nagasaki atomic bomb and the Ivy Mike thermonuclear detonation at the PPG were identified at Ishigaki Island from the 240Pu/239Pu atom ratios of 0.07 and 0.46, respectively. During the 1960s and 1970s, global fallout was the major Pu source to the Northwest Pacific with over 60% contribution to the total Pu. After the cessation of the atmospheric nuclear tests, the PPG again dominated the Pu input due to the continuous transport of remobilised Pu from the Marshall Islands along the North Equatorial Current and the subsequent Kuroshio Current. The Pu contributions from the PPG in recent coral bands (1984 onwards) varied over time with average estimated PPG contributions between 54% and 72% depending on location.  相似文献   

17.
This contribution deals with the controversy between certain scientists on the role of terrestrial vegetation and soils in the global carbon cycle. The hypothesis of a significant net release from the vegetation, is rejected by geochemists because of the limited capacity of the ocean to take up this excess carbon dioxide. As for the man-influenced tropics, a comparison of the figures for the potential and the current phytomass, as well as plausible demographic arguments, support the assertion put forward by ecologists that the carbon budget of this zone cannot be balanced. The tropics lose about 1.7-3.9 × 1015 g/yr of carbon to the atmosphere; however, for several reasons, 0.5-2.8 × 1015 g/yr may be returned to land ecosystem, mostly in other climatic zones. Thus, a balance is achieved on combining low estimates for the losses with high estimates for the gains. From an ecological perspective, this solution is not a very probable one; nevertheless, it cannot conclusively be eliminated.  相似文献   

18.
Soil management practices for sustainable agro-ecosystems   总被引:1,自引:0,他引:1  
A doubling of the global food demand projected for the next 50 years poses a huge challenge for the sustainability of both food production and global and local environments. Today’s agricultural technologies may be increasing productivity to meet world food demand, but they may also be threatening agricultural ecosystems. For the global environment, agricultural systems provide both sources and sinks of greenhouse gases (GHGs), which include carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). This paper addresses the importance of soil organic carbon (SOC) for agro-ecosystems and GHG uptake and emission in agriculture, especially SOC changes associated with soil management. Soil management strategies have great potential to contribute to carbon sequestration, since the carbon sink capacity of the world’s agricultural and degraded soil is 50–66% of the historic carbon loss of 42–72 Pg (1 Pg=1015 g), although the actual carbon storage in cultivated soil may be smaller if climate changes lead to increasing mineralization. The importance of SOC in agricultural soil is, however, not controversial, as SOC helps to sustain soil fertility and conserve soil and water quality, and organic carbon compounds play a variety of roles in the nutrient, water, and biological cycles. No-tillage practices, cover crop management, and manure application are recommended to enhance SOC storage and to contribute to sustainable food production, which also improves soil quality. SOC sequestration could be increased at the expense of increasing the amount of non-CO2 GHG emissions; however, soil testing, synchronized fertilization techniques, and optimum water control for flooding paddy fields, among other things, can reduce these emissions. Since increasing SOC may also be able to mitigate some local environmental problems, it will be necessary to have integrated soil management practices that are compatible with increasing SOM management and controlling soil residual nutrients. Cover crops would be a critical tool for sustainable soil management because they can scavenge soil residual nitrogen and their ecological functions can be utilized to establish an optimal nitrogen cycle. In addition to developing soil management strategies for sustainable agro-ecosystems, some political and social approaches will be needed, based on a common understanding that soil and agro-ecosystems are essential for a sustainable society.  相似文献   

19.
The manufacture and use of radium in the early to mid-20th century within industrial, medicinal and recreational products have resulted in a large number of contaminated sites across a number of countries with notable examples in the USA and Europe. These sites, represent a significant number of unregulated sources of potential radiological exposure that have collectively and hitherto not been well characterised. In 2007, the Radioactive Contaminated Land (RCL) Regulations came into force in the UK, providing the statutory guidance for regulators to classify and deal with RCL. Here we report on results derived from digestion experiments to estimate committed effective dose, a key aspect of the RCL Regulations, from the ingestion of radium contaminated sources that can be found in the environment. This case study includes particles, clinker and artefacts that arise from past military activities on a site that was once an airfield at Dalgety Bay on the Firth of Forth, UK. Since 2011 the number of radium contaminated finds has increased by one order of magnitude on the foreshore areas of Dalgety Bay. The increase in finds may in large part be attributed to a change in monitoring practice. A subsample of sixty sources was selected, on the basis of their activity and dimensions, and subjected to digestion in simulated stomach and lower intestine solutions. The study demonstrated that more radium-226 (226Ra) and lead-210 (210Pb; driven by Polonium solubility) are dissolved from sources in artificial ‘stomach’ solutions compared with ‘lower intestine’ solutions. The combined ‘gut’ solubility for 226Ra and apparent 210Pb varied from less than 1% to up to 35% ICRP 72 conversion factors were used to convert the activities measured in solution to committed effective dose. A little over 10% of the sources tested dissolved sufficient radioactivity to result in 100 mSv committed effective dose to an infant. Using the solubility of 35% as a worst case, minimum source activities necessary to deliver 100 mSv to the full age range of users of the foreshore were estimated. All the estimated activities have been detected and recovered through routine monitoring.  相似文献   

20.
129I has been released during operations at the BNFL nuclear fuel reprocessing plant at Sellafield in west Cumbria over the past thirty years with about 95% being discharged into the sea and 5% into the atmosphere. Soil samples have been taken within a 40 km radius of Sellafield to determine the extent to which the 129I is deposited in the immediate vicinity of the plant. The 129I content has been determined by a sensitive neutron activation technique and levels in soil were found to be elevated above global levels in all samples. The areal distribution of 129I was consistent with direct deposition following release to the atmosphere from Sellafield and the relationship between 129I activity and the distance from Sellafield was of a form predicted by atmospheric dispersion models. The absence of any observable return of 129I from the sea has implications for assessments of dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号