首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
  国内免费   12篇
综合类   16篇
基础理论   1篇
社会与环境   2篇
  2023年   4篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2010年   2篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
北沙河上游流域潜在非点源污染风险时空变化分析   总被引:4,自引:0,他引:4       下载免费PDF全文
非点源污染风险时空分布特征解析和等级分区是有效控制非点源污染的关键.为了弥补PNPI(potential non-point pollution index,潜在非点源污染指数)模型中专家评价法主观赋权的不足,引入均方差决策法,并采用改进后的PNPI模型分析1980-2017年北京市北沙河上游流域潜在非点源污染风险时空变化特征,划分潜在非点源污染风险等级.结果表明:①均方差决策法根据土地利用指标、径流指标和距离指标集的数值离散程度确定各指标权重,其结果可体现各指标权重随土地利用类型动态变化的特点.②1980-2017年土地利用指标、径流指标和距离指标的平均权重分别为0.49、0.18、0.33,说明土地利用类型对非点源污染风险相对影响较大.③受土地利用类型空间分布格局影响,北沙河上游流域潜在非点源污染风险呈西北部山区低、东南部平原区高的分布特征.④随着城镇化的推进,潜在非点源污染极高风险区主要土地利用类型由旱地和园地逐渐演变为城镇用地、农村居民地和建设用地.研究显示,非点源污染风险高低与土地利用类型密切相关,可通过土地利用类型的合理布局,降低流域非点源污染风险.   相似文献   
2.
3.
非点源污染对水生态环境威胁极大,定量解析非点源污染空间分布特征和准确识别关键源区是实现其高效精准治理的基础.输出系数模型广泛应用于非点源污染的模拟,但该模型忽略污染物迁移过程中的损失量,需要进一步改进.以北运河上游流域为例,通过对非点源污染物迁移物理过程的模拟,量化产流、产沙和下渗过程中污染物的损失率改进输出系数模型,并分析Johnes、常用和改进输出系数模型的模拟精度,探究3个输出系数模型对非点源污染空间分布特征和关键源区模拟结果的影响.结果表明:(1)改进输出系数模型模拟误差(-6.79%)明显低于Johnes模型(50.44%)和常用模型(-84.01%),显著提高了非点源污染模拟精度.(2)不同输出系数模型得到的非点源污染空间分布特征和关键源区存在较大差异,改进的输出系数模型模拟结果更符合流域非点源污染特征.流域非点源污染呈西北部低东南部高的空间特征,城镇用地和耕地是主要污染源.(3)基于改进输出系数模型确定的流域非点源污染关键源区主要分布在昌平、沙河、史各庄、温泉乡北部和马连洼街道西部等区域,占流域总面积6.71%.研究可为缺资料地区的非点源污染评估和治理提供更有效的工具支撑...  相似文献   
4.
不同植被绿色屋顶径流水质年际变化特征   总被引:2,自引:2,他引:0  
绿色屋顶是海绵城市建设的重要措施之一,近年来逐渐得到广泛关注.为探究植被和使用时长对绿色屋顶径流水质的影响,于北京市区搭建了3种不同植被类型[佛甲草(Sedum lineare)、大花马齿苋(Portulaca grandiflora)和无植被(对照)]的绿色屋顶.根据2017~2019年植物生长情况、雨季雨水和绿色屋顶径流水质的长期监测,定量分析不同植被绿色屋顶径流水质的年际变化特征.结果表明,相较雨水,3种绿色屋顶在监测期内均是NH+4-N的汇,浓度平均削减率在50.1%~79.2%之间,但均是PO3-4-P、 DCr、 DCu和DNi的源;佛甲草和大花马齿苋绿色屋顶在2017年是NO-3-N的汇,浓度平均削减率分别为71.4%和99.5%,在2018和2019年是NO-3-N的源,而对照绿色屋顶在监测期均为NO-3-N的源;绿色屋顶的植被类型和使用时长显著影响其径...  相似文献   
5.
基于变异性范围法(RVA)的河流生态流量估算   总被引:4,自引:0,他引:4  
河流生态系统的生物组成、结构和功能依赖于河流水流的天然动态变化特征,即河流水文情势。变异性范围法(Range of Variability Approach,RAV)被广泛应用于评估河流生态系统是否得到维护。将RVA法的思路扩展到生态流量的计算,提出了一种简便、立足整体河流水文情势的生态流量估算方法。该方法使用均值与RVA阈值差计算了生态流量值,为维持河流健康生态系统提供支持。将该方法应用于南水北调西线一期工程中泥曲河的生态流量估算,得到引水坝址仁达处年可调径流量为6.44亿m3,与其他生态需水估算方法的结论基本一致。另提出了可支配系数反映河流流量可调用状况。南水北调西线一期工程计划从泥曲调水8亿m3·a-1,从RVA法的理念来看,该方案对仁达至朱巴河段的生态系统将构成威胁,需谨慎实施。  相似文献   
6.
非点源污染是水污染的重要来源之一,揭示非点源污染负荷空间分布特征、筛选并布设最佳管理措施(best management practices,BMPs)对水污染的高效治理有至关重要的意义. 北运河作为北京市重要的排水通道和连接京津冀的重要生态走廊,加强北运河上游非点源污染治理对北运河流域的水质改善至关重要. 然而,当前缺乏针对非点源污染关键源区内布设不同BMPs生态效益评价的研究. 因此,为了解析北运河上游非点源污染空间分布特征,评估关键源区布设不同措施的生态效益,本文基于SWAT模型定量模拟了2019年北运河上游总氮、总磷负荷空间分布特征,并采用单位负荷指数法识别了非点源污染关键源区,同时评估了关键源区布设不同BMPs的总氮、总磷削减效果. 结果表明:①2019年北运河上游流域产生的总氮、总磷负荷分别为126 444.22和12 394.76 kg,呈东南高西北低的空间分布特征,主要来源于城镇用地、耕地和果园等地类. ②北运河上游关键源区分布在东南部17条子流域,占流域总面积的13.16%,产生的总氮、总磷负荷分别占全流域的39.16%和38.10%. ③1/5面积比植被缓冲带的总氮、总磷削减率最高,分别为38.20%和40.37%;2 km河道植草的总氮、总磷削减率最高,分别为19.47%和50.90%;由于关键源区范围内农地面积较小(9.62%),化肥减施措施下污染物削减较低. 研究显示,非点源污染关键源区主要分布在人类活动较多的流域东南部,可通过布设合适的植被缓冲带和河道植草措施,降低关键源区非点源污染负荷.   相似文献   
7.
泥曲河道内最小生态需水研究   总被引:3,自引:0,他引:3  
生态需水研究是水资源开发和可持续利用中不可缺少的部分,目前计算河流生态需水的方法极多。从保护生物多样性的角度出发,结合河道断面和河道内生物信息,建立生物栖息地指标与流量之间的关系。生物栖息地指标包括:平均流速、水面宽、平均水深、湿周、过水断面面积、水力半径以及加权可利用栖息地面积(WUA)等,综合这些栖息地指标与流量的关系确定南水北调西线工程调水区泥曲河道内最小生态需水,为南水北调西线一期工程可调水量提供参考。结果表明,利用流速、水深、过水断面面积和水力半径确定河道最小生态需水
小于多年平均流量的10%,利用水面宽、湿周、WUA等计算的结果分别是多年平均流量的56%、48%和32%。最终确定泥曲泥柯站河道内最小生态需水为193 m3/s,朱巴站最小生态需水为298 m3/s,位于Tennant法计算结果的“较好范围”生态需水等级,可以对河流栖息地提供比较好的保护。  相似文献   
8.
北运河上游流域(沙河水库以上)地处山区源头和城乡结合部过渡区,面临着农业和村镇面源污染风险、河沟道生态系统退化等问题,其水环境治理和水生态修复是北运河流域水生态环境改善的重要环节.本专栏是"北运河项目"中"北运河上游水环境治理与水生态修复综合示范"课题团队近年来的代表性科研成果,遵循以小流域为单元的山水林田湖草一体化保...  相似文献   
9.
黄壤坡面土壤分离速率研究   总被引:3,自引:0,他引:3  
黄壤坡面侵蚀是长江中上游泥沙的主要原因之一,因此对该地区的土壤分离过程的量化研究对土壤侵蚀机理研究的深入和水土流失防治具有一定的理论和实践意义。通过变坡水槽冲刷实验,研究了黄壤坡面土壤分离速率与坡度、流量及主要水动力参数间的关系,探寻模拟土壤分离过程的最优参数。试验结果表明:土壤分离速率与流量、坡度和多个水动力学参数都呈正相关关系。坡度和流量的幂指数均>1,表明二者在实验测定范围内对土壤分离速率有叠加增大作用。水流功率(R2=0.93)与土壤分离速率拟合方程的决定系数最高,表明用水流功率来描述土壤分离速率能获得更多有效信息。当单位水流功率>0.281 m/s后,土壤分离速率随其增大而剧烈增加。但是径流剪切力(与土壤分离速率的决定系数为R2=0.83)值的计算只需获得坡度和水深等数据,水流功率值的计算不仅要采集坡度和水深等数据,还要获得流速等获取难度相对较大的数据。因此,采用径流剪切力来描述土壤分离较水流功率更为方便,而采用水流功率来估算土壤分离速率更为精确。  相似文献   
10.
为深入了解三江源区植被保持土壤的能力,以RS和GIS为技术支撑,在对三江源区植被覆盖度动态变化特征分析的基础上,利用SL190—2007《土壤侵蚀分类分级标准》推荐的中国土壤侵蚀模型CSLE(Chinese soil loss equation)估算了2000—2010年三江源区植被的土壤保持能力,并分析其时空动态变化特征. 结果表明:①2000—2010年三江源区年均植被覆盖度为43%~50%;植被平均土壤保持量为849~955 t/km2,并且空间差异很大,总体上呈自西北向东南增加的空间分布格局. ②2000—2010年植被的土壤保持能力呈逐渐增加趋势,其中2000—2005年各流域的土壤保持能力平均增加了约29 t/km2,并以大夏河与洮河流域土壤保持能力的增幅(约700 t/km2)最大,其次为玛曲至龙羊峡(约300 t/km2),羌塘高原区植被的土壤保持能力增幅(仅2.08 t/km2)最小;2005—2010年各流域的土壤保持能力呈现轻微增长,平均增加了约9 t/km2,其中增幅较大的是柴达木盆地东和直门达至石鼓流域(约16 t/km2),增幅最小的是羌塘高原区(仅3.90 t/km2). ③三江源植被土壤保持能力随植被覆盖度的增加呈非线性增长,可通过指数或幂函数形式表达. 研究显示,增加植被覆盖度有助于提高三江源区的土壤保持能力、控制区域土壤侵蚀.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号