首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   17篇
  国内免费   4篇
安全科学   1篇
废物处理   5篇
环保管理   2篇
综合类   37篇
基础理论   3篇
污染及防治   7篇
灾害及防治   1篇
  2024年   3篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有56条查询结果,搜索用时 0 毫秒
1.
    
Olivine, one of the most abundant minerals existing in nature, is explored as a CO2 carbonation agent for direct carbonation ofCO2 in flue gas. Olivine based CO2 capture is thermodynamically favorable and can form a stable carbonate for long-term storage.Experimental results have shown that water vapor plays an important role in improving CO2 carbonation rate and capacities. Otheroperation conditions including reaction temperature, initial CO2 concentration, residence time corresponding to the flow rate of CO2gas stream, and water vapor concentration also considerably affect the performance of the technology.  相似文献   
2.
为研究冻融-碳化耦合环境下自燃煤矸石混凝土耐久性能,通过冻融-碳化与碳化-冻融2种耦合环境实验,分析其质量、动弹性模量、抗压强度及碳化深度等损失特性,揭示冻融-碳化耦合环境作用机理。结果表明:冻融-碳化环境下质量、相对动弹性模量损失率均与循环次数、水灰比呈正相关;小于63次,碳化-冻融环境劣化其质量能力强于冻融-碳化环境;超过63次,冻融-碳化环境劣化能力强于碳化-冻融环境;冻融-碳化环境劣化动弹性模量能力高于碳化-冻融环境。初期碳化反应在一定程度上能促进强度增长,但冻融100次且碳化14 d后,冻融-碳化环境下强度损失率与水灰比呈正相关。冻融-碳化环境下碳化深度与时间、水灰比呈正相关,冻融环境是加速其碳化腐蚀的催化剂,碳化-冻融环境劣化碳化深度强于冻融-碳化环境,2种耦合环境碳化差值0.87~2.10 mm。为深入研究煤矸石混凝土在复杂环境中的耐久性提供参考。  相似文献   
3.
为了促进粉煤灰和电石渣建材化高效利用和协同矿化CO2减排,研究了粉煤灰、电石渣及其配合物的碳酸化特性。实验采用pH在线测试方法分别对粉煤灰、电石渣以及两者配合物的碳酸化过程的pH进行在线测试,并对原料和产物进行XRD、TGA和SEM表征。结果表明:相同条件下,粉煤灰碳酸化浆液pH降到7.0的平均速度约为电石渣的51倍;与等量电石渣单独碳酸化相比,粉煤灰与电石渣按照4:1(质量比)复配碳酸化pH降低到7.0的速度较纯电石渣提高了近5.6倍,且在相同电石渣配量的条件下,粉煤灰-电石渣复配料比碳酸钙-电石渣复配料的碳酸化反应完成时间缩短了31.6%,说明电石渣与粉煤灰复配后进行碳酸化反应具有明显协同促进作用。TGA分析表明,纯粉煤灰和纯电石渣的固碳率分别约为2%和61.3%,粉煤灰与电石渣复配料的固碳率较等量单一电石渣和粉煤灰的固碳率之和的计算值提高了19.6%。SEM分析表明,粉煤灰与电石渣复配料碳酸化产物碳酸钙颗粒在粉煤灰表面呈现异位分散附着形态,而单一电石渣碳酸化产物碳酸钙则在电石渣颗粒表面呈现原位聚集附着形态。这可能是复配料固碳率提高的主要原因。  相似文献   
4.
    
Alkaline industrial wastes are considered potential resources for the mitigation of CO2 emissions by simultaneously capturing and sequestering CO2 through mineralization. Mineralization safely and permanently stores CO2 through its reaction with alkaline earth metals. These elements are found in a variety of abundantly available industrial wastes that have high reactivity with CO2, and that are generated close to the emission point‐sources. Among all suitable industrial wastes, steelmaking slag has been deemed the most promising given its high CO2 uptake potential. In this paper, we review recent publications related to the influence of process parameters on the carbonation rate and conversion extent of steelmaking slags, comparing and analyzing them in order to define the present state of the art. Furthermore, the maximum conversions resulting from different studies are directly compared using a new index, the Carbonation Weathering Rate (CWR), which normalizes the results based on particle size and reaction duration. To date, the carbonation of Basic Oxygen Furnace steelmaking slag, under mild conditions, presents both the highest carbonation conversion and CWR, with values equal to 93.5% and 0.62 μm/min, respectively. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd  相似文献   
5.
    
Although microbial treatments of heavy metal ions in wastewater have been studied, the removal of these metals through incorporation into carbonate minerals has rarely been reported. To investigate the removal of Fe^3+ and Pb^2+, two representative metals in wastewater, through the precipitation of carbonate minerals by a microbial flocculant (MBF) produced by Bacillus mucilaginosus. MBF was added to synthetic wastewater containing different Fe^3+ and Pb^2+ concentrations, and the extent of flocculation was analyzed. CO2 was bubbled into the mixture of MBF and Fe^3+/Pb^2+ to initiate the reaction. The solid substrates were analyzed via X-ray diffraction, transmission electron microscopy and energy dispersive spectroscopy. The results showed that the removal efficiency decreased and the MBF adsorption capacity for metals increased with increasing heavy metal concentration. In the system containing MBF, metals (Fe^3+ and Pb^2+), and CO2, the concentrated metals adsorbed onto the MBF combined with the dissolved CO2, resulting in oversaturation of metal carbonate minerals to form iron carbonate and lead carbonates. These results may be used in designing a method in which microbes can be utilized to combine CO2 with wastewater heavy metals to form carbonates, with the aim of mitigating environmental problems.  相似文献   
6.
    
A novel SBM-C-PBR was constructed for microalgae cultivation. Membrane fouling was greatly mitigated by membrane carbonation. NH4+ and P removal rates were around 80% in SBM-C-PBR. Biomass was completely retained by membrane. In this study, a novel sequence batch membrane carbonation photobioreactor was developed for microalgae cultivation. Herein, membrane module was endowed functions as microalgae retention and CO2 carbonation. The results in the batch experiments expressed that the relatively optimal pore size of membranes was 30 nm, photosynthetically active radiation was 36 W/m2 and the CO2 concentration was 10% (v/v). In long-term cultivation, the microalgal concentration separately accumulated up to 1179.0 mg/L and 1296.4 mg/L in two periods. The concentrations of chlorophyll a, chlorophyll b and carotenoids were increased about 23.2, 14.9 and 6.3 mg/L respectively in period I; meanwhile, the accumulation was about 25.0, 14.5, 6.6 mg/L respectively in the period II. Furthermore, the pH was kept about 5.5–7.5 due to intermittent carbonation mode, which was suitable for the growth of microalgae. Transmembrane pressure (TMP) was only increased by 0.19 and 0.16 bar in the end of periods I and II, respectively. The pure flux recovered to 75%–80% of the original value by only hydraulic cleaning. Scanning electron microscope images also illustrated that carbonation through membrane module could mitigate fouling levels greatly.  相似文献   
7.
随着工业化的不断推进,人类的生活水平得到巨大提升,在经济快速发展的同时,大量化石燃料燃烧产生的CO2被排放到大气中,加剧了全球变暖.目前,对于减少工业生产中CO2的排放,发展CO2捕集和封存技术(CCS)是行之有效的方法之一.由于钢渣巨大的固碳潜力及较低的经济成本,从经济和环境角度考虑,钢渣固碳技术前景广阔.针对钢渣固碳技术的研究现状及未来的发展进行了综述,包括钢渣的组成性质和资源化利用方式,并重点介绍了钢渣固碳技术反应机理、现存的问题及未来的发展方向.  相似文献   
8.
CO2化学吸收法分离纯度高,技术成熟,但能耗过高及成本是困扰该技术发展的瓶颈.在常压条件下对利用Ca(OH)2直接矿物碳酸化固定MDEA/PZ混合吸收富液中CO2进行了一系列实验研究,考察了吸收液负荷、Ca(OH)2投加量、pH、温度及搅拌速率等因素对解吸率的影响,并利用动态吸收-解吸循环实验研究了其CO2吸收性能和循环使用稳定性,最后对碳酸化反应产物进行了XRD、TEM分析.结果表明,在常压条件下,Ca(OH)2可以通过液相直接矿物碳酸化对CO2进行直接固定,并实现吸收富液的再生;随着负荷的升高及Ca(OH)2投加量、pH、搅拌速率的增大,解吸率随之增加;随着溶液温度升高,解吸率下降;经过5次动态吸收-解吸循环实验后CO2吸收量可以达到并保持在0.57 mol·L-1,显示出了良好的循环稳定性.  相似文献   
9.
    
Cement kiln dust accelerated carbonation in aqueous slurries at 25°C and 3 bar PCO2 was investigated by X‐ray diffraction analysis, solution chemistry, scanning electron microscopy, and energy dispersive spectroscopy to better understand chemical and mineralogical processes governing CO2 uptake. Dissolution of lime, portlandite, and ettringite occurs primarily in the carbonation process. These provide Ca2+ ions to react with CO32− ions leading to calcite bulk precipitation from solution. Concomitantly, the dissolution of Ca‐(Al)‐silicate grains takes place but it is limited by the formation of a Si‐rich and Ca‐depleted rim which appears onto the grain surfaces due to an initial hydration step. The Si‐rich decalcified rim hinders the diffusion of Ca2+ ions from the core of silicate grains to the bulk solution. The diffusion of Ca ions through the rim is then the rate limiting step for the carbonation of Ca‐(Al)‐silicate, that accounts for up to 4% of the carbonation potential. Achieved results elucidate the processes governing CO2 uptake by cement kiln dust, and are fundamental in the perspective of enhanced CO2 sequestration by cement kiln dust. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.  相似文献   
10.
采用炼钢精炼渣,通过气固碳酸化反应吸附CO2,考察了不同吸附温度下精炼渣对纯CO2和模拟高炉煤气中CO2的吸附能力。实验结果表明:吸附温度对精炼渣吸附CO2反应有显著的影响,升高温度可以提高精炼渣对CO2的吸附能力;在400 ℃时,精炼渣吸附纯CO2和模拟高炉煤气中CO2的量分别为4.7 mg/g和9.8 mg/g;吸附温度升高到500 ℃和550 ℃时,精炼渣对纯CO2的吸附能力强于高炉煤气中CO2;在550 ℃时,精炼渣吸附纯CO2和模拟高炉煤气中CO2的量达到最高,分别为14.7 mg/g和12.9 mg/g。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号